在Pandas中展开DataFrame列中的字符串至多行的五种方法

在数据分析中,我们经常会遇到需要将DataFrame中的一列字符串数据拆分成多行的情况。例如,一个订单ID可能对应多个商品名称,而这些商品名称以逗号分隔存储在单个单元格中。本文将介绍五种不同的方法来实现这一需求,使用Python的Pandas库来处理数据。这些方法各有优缺点,适用于不同的场景和数据集大小。

DataFrame的初始状态

在介绍五种方法之前,我们先来看一下原始的DataFrame长什么样子。假设我们有以下数据:

import pandas as pd

data = {
   
   'order_id': [1, 2, 3], 'column_name': ['value1, value2', 'value3, value4, value5', 'value6']}
df = pd.DataFrame(data)

执行上述代码后,DataFrame df 的样子如下:

order_id column_name
1 value1, value2
2 value3, value4, value5
3 value6

方法一:使用str.splitstack

代码实现

import pandas as pd

data = {
   
   'order_id': [1, 2, 3], 'column_name': ['value1, value2', 'value3, value4, value5', 'value6']}
df = pd.DataFrame(data, columns=['order_id', 'column_name'])
new_df = df['column_name'].str.split(', ', expand=True).stack().r
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值