切比雪夫距离 入门例题

本文介绍了切比雪夫距离和曼哈顿距离的概念,并揭示了两者之间的转换关系。通过举例说明如何从曼哈顿距离转换为切比雪夫距离,以及在面对非整数情况时如何处理。同时提到了两道相关的竞赛题目,用于展示这种距离在实际问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

切比雪夫距离和曼哈顿距离

众所周知两个点 ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1, y_1), (x_2, y_2) (x1,y1),(x2,y2) 的曼哈顿距离是 ∣ x 1 − x 2 ∣ + ∣ y 1 − y 2 ∣ |x_1 - x_2| + |y_1 - y_2| x1x2+y1y2

显然我们可以通过不等式去掉绝对值 max ⁡ ( ∣ x 1 + y 1 + x 2 + y 2 ∣ , ∣ x 1 + y 1 − ( x 2 + y 2 ) ∣ ) \max(|x_1 + y_1 + x_2 + y_2|, |x_1 + y_1 - (x_2 + y_2)|) max(x1+y1+x2+y2,x1+y1(x2+y2))

切比雪夫距离就是 max ⁡ ( ∣ x 1 − x 2 ∣ , ∣ y 1 − y 2 ∣ ) \max(|x_1 - x_2|, |y_1 - y_2|) max(x1x2,y1y2)

然后我们发现这两个格式很像,事实上确实是可以转换的:

  • 曼哈顿距离 到 切比雪夫距离 : ( x , y ) → ( x + y , x − y ) (x, y) \to (x + y, x -y ) (x,y)(x+y,xy)
  • 切比雪夫距离 到 曼哈顿距离 : ( x , y ) → ( x + y 2 , x − y 2 ) (x, y) \to (\frac{x + y}{2}, \frac{x - y}{2}) (x,y)(2x+y
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值