地理空间数据分析入门【PYTHON】

地理空间数据具有很大的价值。 本文介绍处理地理空间数据所需的思维方式和工具。 它还包括了有史以来第一次空间数据分析的重现:约翰·斯诺 (John Snow) 对 1854 年布罗德街霍乱爆发的调查。‌‌

NSDT工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 - REVIT导出3D模型插件 - 3D模型语义搜索引擎 - Three.js虚拟轴心开发包 - 3D模型在线减面 - STL模型在线切割

1、地理空间数据简介

地理空间数据描述地球表面上的任何物体或特征。 常见的例子包括:

  • 品牌应该将下一家门店开在哪里?
  • 天气如何影响区域销售?
  • 开车的最佳路线是什么?
  • 哪个地区将受到飓风的打击最严重?
  • 冰盖融化与碳排放有何关系?
  • 哪些地区发生火灾的风险最高?

这些问题的答案很有价值,使空间数据技能成为任何数据科学家工具集的重要补充。

2、基础

让我们首先学习地理空间数据的语言。 在本节结束时,你将了解:

  • 矢量数据与栅格数据
  • 地理参考系统 (CRS)
  • 地理配准和地理编码之间的区别。

2.1 矢量数据

矢量数据(vector data)代表世界的几何形状。 当你打开导航地图时,你会看到矢量数据。 道路网络、建筑物、餐馆和 ATM 都是具有相关属性的矢量。

注意:矢量是数学对象。 与栅格不同,你可以放大矢量而不会损失分辨率。

矢量数据主要分为三种类型:

  • 线。 连接点创建一条线。
  • 多边形。 连接线与封闭区域生成多边形。

我们可以使用矢量来呈现地球表面的特征和属性。 你最常看到存储在 shapefile (.shp) 中的矢量。

定义属性的特定属性通常伴随着向量。 例如,建筑物的属性(例如,其名称、地址、价格、建造日期)可以伴随多边形。

矢量组成导航地图

2.2 光栅数据

光栅数据(raster data)是像素网格。 栅格中的每个像素都有一个值,例如颜色、高度、温度、风速或其他测量值。

Google 地图中的默认视图包含矢量,而卫星视图包含拼接在一起的光栅卫星图像。 卫星图像中的每个像素都有一个与之关联的值/颜色。 高程图中的每个像素代表一个特定的高度。 光栅 = 带像素的图像

南非林波波省南部地区的农田

这些不是你常见的图像。 它们包含我们眼睛可以看到的 RGB 数据,以及来自可见电磁频谱之外的多光谱甚至高光谱信息。 我们可以获得具有多个通道的图像,而不是仅限于 3 个通道/颜色 (RGB)。

肉眼看不见的东西,只吸收电磁频谱的一小部分,却可以在其他电磁频率中显现出来。

光栅 vs. 矢量:

矢量 光栅
点、线、多边形 像素
几何对象、无限可扩展 固定网格、固定分辨率
.svg、.shp .jpg、.png、.tif

2.3 坐标参考系统 (CRS)

为了确定地球表面的确切位置,我们使用地理坐标系。

例如,尝试在 Google 地图上搜索 37.971441、23.725665。 这两个数字指向一个确切的地方——希腊雅典的帕台农神庙。 这两个数字是 CRS 定义的坐标。

尽管地球是一个 3 维球体,但我们使用经度(南北方向的垂直线)和纬度(东西方向的水平线)的 2 维坐标系来识别地球表面的位置。 将 3D 球体(地球)转换为 2D 坐标系会引入一些扭曲。 我们将在下一节“地图投影”中探讨这些

注意:没有完美的 CRS

CRS 的任何选择都涉及到扭曲以下一项或全部内容的权衡:

  • 形状
  • 比例/距离
  • 区域

很重要!!! 地理空间分析中的大多数错误都源于为所需操作选择了错误的 CRS。 如果你不想花几天几夜的时间进行调试,请仔细阅读本节!

常见的 CRS 陷阱:

  • 混合坐标系:组合数据集时,空间对象必须具有相同的参考系。 请务必将所有内容转换为相同的 CRS。 我们将在下面向您展示如何执行此转换。
  • 计算面积:在测量形状的面积之前使用等面积 CRS。
  • 计算距离:计算对象之间的距离时使用等距 CRS。

2.4 地图投影

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值