8个图神经网络的典型用例

虽然 ChatGPT 或 Diffusion 模型等 AI 系统最近备受关注,但图神经网络 (GNN) 却发展迅速。在过去的几年中,GNN 悄然成为众多激动人心的新成就背后的黑马,这些成就从纯学术研究突破一路发展到大规模积极部署的实际解决方案。

Uber、谷歌、阿里巴巴、Pinterest、Twitter 等许多公司已经在其部分核心产品中转向基于 GNN 的方法,其动机是这些方法与之前最先进的 AI 架构相比表现出显着的性能改进。

尽管问题类型多样,底层数据集也存在差异,但所有这些突破都使用 GNN 这一统一框架作为核心运行。这表明了一种潜在的视角转变:图结构数据提供了一个通用且灵活的框架,用于描述和分析任何可能的实体集及其相互作用。

图机器学习的实际优势是什么?为什么图神经网络在 2024 年很重要?本文将回顾 GNN 的一些具有高度影响力的应用,为你提供了解 AI 下一波浪潮所需的一切知识。

NSDT工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 - REVIT导出3D模型插件 - 3D模型语义搜索引擎 - Three.js虚拟轴心开发包 - 3D模型在线减面 - STL模型在线切割 

1、简介

图数据遍布全球:任何由实体及其关系组成的系统都可以用图形表示。尽管过去十年来,深度学习算法在自然语言处理、计算机视觉和语音识别等领域取得了突出进展,因为它们能够通过非线性层从数据中提取高级特征,但大多数深度学习架构都是专门针对欧几里得结构化数据(如表格数据、图像、文本和音频)量身定制的,而图形数据则在很大程度上被忽略了。

传统的人工智能方法旨在从由某种“刚性”结构编码的对象中提取信息。例如,图像通常被编码为固定大小的二维像素网格,文本被编码为一维单词序列(或标记)。另一方面,以图结构的方式表示数据可能会揭示从这些实体及其关系的高维表示中浮现出的有价值的信息,否则这些信息将会丢失。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值