大语言模型的效果好,很大程度上归功于算力和数据集,算力使得模型可以足够大,大到模型的理解、记忆、推理和生成以及泛化能力可以同时兼备,而数据集则是模型学习的来源。以ChatGPT开始,现在的大语言模型都采用生成式的架构(相比BERT),而生成式的大语言模型大都采用自回归Transformer架构。
LLM中的prompt方法主要用于fine-tune阶段,即在预训练的基础上,针对特定任务的模板或提示语,这些提示语通常包含了问题的关键信息,例如问题类型、答案类型、限制条件等,通过少量的标注数据(提示语)对模型进行微调,使其更好地适应特定的任务和应用场景。在这个过程中,prompt工程可以帮助模型更好地理解任务和输入,并生成更准确的输出,从而提高模型在实际应用中的效果和性能。
在推理时,prompt方法不用于修改用户的输入。相反,它主要用于为模型提供额外的上下文信息,以便更好地理解用户的输入和问题。例如,在问答任务中,prompt方法可以生成一个与问题相关的提示语,帮助模型更好地理解问题和用户输入,并生成更准确的答案。
具体来说,prompt工程可以通过以下几个方面来帮助模型:
提供任务相关的提示信息:prompt工程可以生成针对特定任务的提示信息,例如问题类型、答案类型、限制条件等。这些提示信息可以帮助模型更好地理解任务和输入,并生成更准确的输出。
生成针对特定任务的模板:prompt工程可以生成针对特定任务的模板,以帮助模型更好地生成符合要求的输出。例如,在问答任务中,可以使用模板来指导模型生成符合问题要求的答案。
提供额外的上下文信息:prompt工程可以提供额外的上下文信息,以帮助模型更好地理解输入和问题。例如,在文本生成任务中,可以使用prompt工程提供的上下文信息来