论文阅读笔记 — 图模互补:知识图谱与大模型融合综述 — 按参考文献整理
关于
- 首次发表日期:2024-09-13
- 论文原文链接:http://xblx.whu.edu.cn/zh/article/doi/10.14188/j.1671-8836.2024.0040/
- 将文章中的参考文献整理一下,基本保持原文的目录结构
引言、相关介绍
- Knowledge Graphs: Opportunities and Challenges
- 24 Mar 2023
- 传统的图谱构建、补全技术也面临许多难题,如数据获取、实体识别、知识抽取和实体消歧等。
- Knowledge Extraction with No Observable Data
- 6 September 2019
- https://github.com/snudatalab/KegNet
- 知识抽取是从各种数据源中提取有价值的信息,涵盖了结构化和半结构化文本数据、非结构化文本数据等场景。在(半)结构化数据的知识抽取中,模型通过简单的规则和固定的模式,从结构化数据(如关系数据库)或半结构化数据(如维基百科)中实现知识抽取。而非结构化数据的知识抽取是抽取任务的难点,一般包括实体识别、关系抽取和事件抽取,需从文本中抽取原子信息、实体间的语义关系等。例如生成网络KEGNET,在没有可观测数据的情况下进行知识抽取。
- A review: Knowledge reasoning over knowledge graph
- 1 March 2020
- 早期的知识图谱推理基于一定的规则和限制,需要依赖规则、假设等前提条件。
- NeuInfer: Knowledge Inference on N-ary Facts
- January 2020
- https://github.com/gsp2014/NeuInfer
- 随着机器学习的研究不断深入,神经网络模型Neulnfer从主三元组和辅助描述构成的事实中进行未知元素推理。
- KnowledGPT: Enhancing Large Language Models with Retrieval and Storage Access on Knowledge Bases
- Submitted on 17 Aug 2023
- 知识图谱可以提供一种解释和推理知识的手段,用于探究大模型内部复杂的工作步骤和推理过程。例如个性化知识库与大模型集成检索框架KnowledGPT,提高了处理复杂搜索和歧义的能力
- Joint Knowledge Graph and Large Language Model for Fault Diagnosis and Its Application in Aviation Assembly
- Date of Publication: 08 March 2024
- 知识图谱与大模型融合是一个热门研究领域
- Unifying Large Language Models and Knowledge Graphs: A Roadmap
- 提出了统一大模型与知识图谱的前瞻性路线图,总结了现有的大模型与知识图谱的先进技术,并讨论了大模型与知识图谱融合的相关挑战和发展方向。
大模型增强知识图谱
增强知识图谱构建
- ChatIE: Zero-Shot Information Extraction via Chatting with ChatGPT
- Submitted on 20 Feb 2023 (v1), last revised 27 May 2024 (this version, v2)
- https://github.com/cocacola-lab/chatie
- ChatIE将实体抽取、命令实体识别和事件抽取任务转化为多回合问答问题,旨在将复杂的信息抽取任务分解为多个简单的子任务,并设计提示词输入ChatGPT,在多个信息提取数据集上取得良好效果。
- 不涉及大模型微调任务
- 通过提示工程抽取信息
- ChatExtract: Extracting Accurate Materials Data from Research Papers with Conversational Language Models and Prompt Engineering
- Submitted on 7 Mar 2023 (v1), last revised 21 Feb 2024 (this version, v3)
- ChatExtrac设计了一种强迁移性的数据提取方法,其核心通过构建一系列用于提取结构化数据的工程提示词,实现大模型在零样本学习的自动识别和提取数据功能,并且ChatExtract可以应用于各种对话式大模型,产生高质量的数据提取结果。
- 不涉及大模型微调任务
- 通过提示工程提取提示问题集
- AutoKG: LLMs for Knowledge Graph Construction and Reasoning: Recent Capabilities and Future Opportunities
- Submitted on 22 May 2023 (v1), last revised 18 Aug 2024 (this version, v3)
- 在处理知识密集型任务时,为了解决大模型无法捕捉到复杂的关系动态,AutoKG提出一种轻量级和高效的自动化知识图构建方法。与传统的通过语义相似性搜索方式不同,AutoKG使用预训练大模型构建简化的知识图谱。AutoKG构建的知识图与传统的知识图结构不同,它以关键字作为节点,记录各个节点间的相关性权重,AutoKG会根据关键词之间的关联程度建立知识图中的边。但AutoKG仅仅在外部知识库的提取关键词阶段,利用大模型的信息抽取能力,没有在后续丰富知识图阶段结合大模型。
- 通过预训练大模型提取关键词
- Does Synthetic Data Generation of LLMs Help Clinical Text Mining?
- Submitted on 8 Mar 2023 (v1), last revised 10 Apr 2023 (this version, v2)
- 探索大模型在医疗保健领域实体抽取的效果,通过大模型生成大量高质量带标签的训练数据,并将其作为提示信息局部微调大模型。实验结果表明,微调大模型相较于通用大模型,性能有较好的提升。
- 利用ChatGPT生成标注样本
- Extract, Define, Canonicalize: An LLM-based Framework for Knowledge Graph Construction
- Submitted on 5 Apr 2024
增强知识图谱补全
知识图谱的构建往往是不完备的,传统的知识图补全任务利用知识图谱的结构信息预测三元组中缺失的实体,但是在解决长尾实体时需要付出很高的代价。大模型可作为额外知识库提取可信知识,完成知识图谱的补全。
- Exploring Large Language Models for Knowledge Graph Completion
- Submitted on 26 Aug 2023 (v1), last revised 18 Feb 2024 (this version, v4)
- https://github.com/yao8839836/kg-llm
- 一种做法是直接将大模型应用在知识图谱补全任务中,将三元组分类、关系预测和实体(链接)预测转化为提示文本,通过提示大模型生成预测结果。例如文献[67]构建了以三元组的实体和关系描述作为提示,在微调大模型KG-ChatGLM-6B和KG-LLaMA(7B和13B)上进行实验,在补全任务中取得了较好的性能。
- 知识图谱内嵌大模型
- KICGPT: Large Language Model with Knowledge in Context for Knowledge Graph Completion
- Submitted on 4 Feb 2024 (v1), last revised 23 Feb 2024 (this version, v2)
- https://github.com/weiyanbin1999/kicgpt
- 而另一种补全方法则是间接利用提示大模型。例如KICGPT集成大模型与传统的结构感知模型(知识补全检索器),检索器对链接预测任务中缺失三元组进行查询,根据分数排序生成候选实体列表,然后以结构知识编码作为大模型情景学习示例,重新对候选实体列表进行排序。
- 大模型作为额外知识库
- Contextualization Distillation from Large Language Model for Knowledge Graph Completion
- Submitted on 28 Jan 2024 (v1), last revised 24 Feb 2024 (this version, v3)
- https://github.com/david-li0406/contextulization-distillation
- 与之相似,文献[69]通过提示大模型,为三元组生成出高质量的上下文描述,之后借助传统的补全方案训练模型,间接通过大模型补全知识图谱。
- 大模型作为训练数据生成器
- Making Large Language Models Perform Better in Knowledge Graph Completion
- Submitted on 10 Oct 2023 (v1), last revised 14 Apr 2024 (this version, v2)
- https://github.com/zjukg/kopa
- 然而简单的问答方式无法利用大模型的推理能力,缺乏对知识图谱结构中实体和关系的描述,大模型可能无法理解知识图谱的结构信息。为实现更有效和准确的图谱补全,学者们将知识图谱中的实体、关系等结构信息融入大模型,使大模型具有结构感知推理能力。文献[70]提出了一种名为KoPA的知识前缀适配器,将知识图谱结构信息整合到大模型中。KoPA模型将知识图谱结构信息进行知识嵌入,并投射到文本空间。借助KoPA生成的虚拟知识令牌(Token)增强输入提示序列微调大模型,使得大模型能够在结构感知状态下解码指令的答案,提高了大模型在知识图谱补全任务中的性能。
- 知识图谱内嵌大模型
增强知识图谱推理
- 知识图谱与大模型融合
- 2022年5月
- 以往的知识图谱推理任务中,研究人员利用知识计算进行显式的推理,借助深度学习模型将实体和关系嵌入到高维向量空间实现推理[71]。不过该方法依赖于知识图谱自身的知识,缺乏