找出最长递增子序列

本文详细介绍了如何使用动态规划解决最长递增子序列问题,包括算法原理、具体实现和代码实例。通过实例演示了如何找到给定序列中的最长递增子序列,以及动态规划在解决此类问题中的应用。

<p>例如给定一个序列:1,5,2,4,8,3,7,11,17,5,20,11,其中最长递增子序列为:1,2,4,8,11,17,20</p><p>求解思路:可以使用动态规划解决此问题,用两个数组dp[n]和pos[n],其中dp用来表示到第i位时的最长子序列长度,而pos表示在这个最长子序列中上一个元素的位置。这个算法的空间复杂度为O(n),时间复杂度为n的平方。</p><p>第i趟扫描从第i个元素开始,当a[j]>a[i] && dp[j] < dp[i] + 1时更新dp[j] = dp[i] + 1,pos[j] = i,当扫描n趟之后,dp的值为到第i个元素的最长字符串长度是多少,pos的值表示第i个元素最长子序列的上以元素是什么。</p><p>具体代码为:</p>
#include "stdafx.h"
#include <vector>
#include<iostream>
using namespace std;
void max_sub_seq(int a[], int len)
{
	int *dp = new int[len];
	int *pos = new int[len];
	bool flag = false; // 为了输出时进行控制
	int i,j;
	for (i = 0; i < len; i++)
	{
		dp[i] = 1;
		pos[i] = i;
	}
	for (i = 0; i < len; i++)
	{
		for (j = i + 1; j < len; j++)
		{
			if (a[j] > a[i] && dp[j] < dp[i] + 1)
			{
				dp[j] = dp[i] + 1; // dp更新
				pos[j] = i;        //位置更新
			}
		}
	}
	pos[0] = -1;
	int max = 0;
	for (i = 0; i < len; i++)
	{
		if (dp[i] > dp[max])
			max = i;
	}
	vector<int> result;
	for (j = max; j >= 0 && (j == 0 || pos[j] != j);) // 更具pos值向前寻找最长子串的值
	{
		result.push_back(a[j]);
		j = pos[j];
		if (flag == true && j == 0)
		{
			flag = false;
			break;
		}
			
	}
	for (j = result.size() - 1; j >= 0; j--)
		cout << result[j] << ' ';
}

int _tmain(int argc, _TCHAR* argv[])
{
	int a[] = {1,5,2,4,8,3,7,25,18,9,11,17,5,20,11};
	max_sub_seq(a, 15);
	return 0;
}
注:代码在VS2013下通过编译,并能正确运行,如有问题请在评论中指出或邮件告知。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值