文章目录
在YOLOv8的不断优化过程中,传统的卷积神经网络(CNN)作为主干网络(Backbone)虽然在多个计算机视觉任务中表现出色,但随着Transformer架构的崛起,基于Transformer的网络逐渐展现出更强的特征建模能力。Swin Transformer作为一种改进型Transformer,在视觉任务中取得了显著的成果。本篇文章将详细探讨如何将Swin Transformer替换YOLOv8的Backbone,从而提升检测精度与计算效率。
1. 为什么选择Swin Transformer替换YOLOv8的Backbone?
YOLOv8的主干网络(Backbone)主要负责提取输入图像的低层次特征,传统上,YOLO系列通常使用一些经典的CNN网络(如Darknet-53、CSPDarknet等)。然而,卷积层在建模全局依赖关系时存在局限性,且随着网络的加深,计算量也呈指数增长。相比之下,Transformer架构具有天然的全局感知能力,可以更好地捕捉图像中的长期依赖关系,并且通过注意力机制(Attention)提高网络的表征能力。
Swin Transformer通过分层的设计,解决了传统Transformer在高分辨率图像上的计算和内存消耗问题,同时提供了更强的特征表达能力。因此,使用Swin Transformer替换YOLOv8的Backbone,可以显著提高检测精度,尤