YOLOv8主干网络重构:EfficientNetV2驱动的多尺度特征增强机制

背景与目标

YOLOv8是目标检测领域的一项重要技术,其主干网络在特征提取阶段发挥着关键作用。本文将探讨如何通过改进YOLOv8的主干网络,特别是利用EfficientNetV2均衡缩放网络来优化特征提取层,以提高检测精度和效率。

YOLOv8简介

YOLO(You Only Look Once)系列模型以其高效的实时目标检测能力而闻名。YOLOv8作为该系列的最新版本,通过引入改进的网络结构和算法优化,进一步提升了目标检测的性能。然而,YOLOv8在特征提取阶段的网络结构仍有改进的空间。

EfficientNetV2概述

EfficientNetV2是一种高效的卷积神经网络,通过均衡缩放网络结构(宽度、深度和分辨率)来提升模型性能。其核心思想是通过复合缩放方法,在保持计算效率的同时提升模型的表达能力。EfficientNetV2在图像分类任务中表现出色,具有良好的特征提取能力。

研究目标

本文的目标是将EfficientNetV2的均衡缩放网络结构引入YOLOv8的主干网络,优化特征提取层,从而提升YOLOv8在目标检测任务中的精度和效率。

EfficientNetV2集成到YOLOv8中的方法

EfficientNetV2的网络结构

EfficientN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值