文章目录
背景与目标
YOLOv8是目标检测领域的一项重要技术,其主干网络在特征提取阶段发挥着关键作用。本文将探讨如何通过改进YOLOv8的主干网络,特别是利用EfficientNetV2均衡缩放网络来优化特征提取层,以提高检测精度和效率。
YOLOv8简介
YOLO(You Only Look Once)系列模型以其高效的实时目标检测能力而闻名。YOLOv8作为该系列的最新版本,通过引入改进的网络结构和算法优化,进一步提升了目标检测的性能。然而,YOLOv8在特征提取阶段的网络结构仍有改进的空间。
EfficientNetV2概述
EfficientNetV2是一种高效的卷积神经网络,通过均衡缩放网络结构(宽度、深度和分辨率)来提升模型性能。其核心思想是通过复合缩放方法,在保持计算效率的同时提升模型的表达能力。EfficientNetV2在图像分类任务中表现出色,具有良好的特征提取能力。
研究目标
本文的目标是将EfficientNetV2的均衡缩放网络结构引入YOLOv8的主干网络,优化特征提取层,从而提升YOLOv8在目标检测任务中的精度和效率。
EfficientNetV2集成到YOLOv8中的方法
EfficientNetV2的网络结构
EfficientN