给定一个无序的数组 nums
,返回 数组在排序之后,相邻元素之间最大的差值 。如果数组元素个数小于 2,则返回 0
。
您必须编写一个在「线性时间」内运行并使用「线性额外空间」的算法。
示例 1:
输入: nums = [3,6,9,1] 输出: 3 解释: 排序后的数组是 [1,3,6,9], 其中相邻元素 (3,6) 和 (6,9) 之间都存在最大差值 3。
示例 2:
输入: nums = [10] 输出: 0 解释: 数组元素个数小于 2,因此返回 0。
思路一:直接排序后模拟题意计算(时间复杂度不合要求)
c++解法
class Solution {
public:
int maximumGap(vector<int>& nums) {
int n = nums.size();
if(n<2)return 0;
sort(nums.begin(),nums.end());
int res = 0;
for(int i = 0;i<n-1;i++){
res = max(nums[i+1]-nums[i],res);
}
return res;
}
};
思路二:基数排序
c++解法
class Solution {
public:
int maximumGap(vector<int>& nums) {
int n = nums.size();
if (n < 2) {
return 0;
}
int exp = 1;
vector<int> buf(n);
int maxVal = *max_element(nums.begin(), nums.end());
while (maxVal >= exp) {
vector<int> cnt(10);
for (int i = 0; i < n; i++) {
int digit = (nums[i] / exp) % 10;
cnt[digit]++;
}
for (int i = 1; i < 10; i++) {
cnt[i] += cnt[i - 1];
}
for (int i = n - 1; i >= 0; i--) {
int digit = (nums[i] / exp) % 10;
buf[cnt[digit] - 1] = nums[i];
cnt[digit]--;
}
copy(buf.begin(), buf.end(), nums.begin());
exp *= 10;
}
int ret = 0;
for (int i = 1; i < n; i++) {
ret = max(ret, nums[i] - nums[i - 1]);
}
return ret;
}
};
分析:
本题要求排序后数字之间差的最大值,利用快速排序等方法肯定不满足需求,故应使用基数排序或桶排序来达到O(n)的时间复杂度,基数排序为利用长度为n的数组来存放比较的中间数,最后将排序后的数利用循环找到差值最大的数返回即可解决,时间复杂度为O(n),空间复杂度为O(n)
总结:
本题考察对基数排序的应用,利用基数排序可以将数以O(n)的时间复杂度存储到数组中,再进行处理后可以得到答案,桶排序也可得到答案