全面打通DevOps数据链的研发效能度量平台

本文介绍了研发效能度量平台的整体架构,包括数据采集层、数据计算层和数据分析展现层,强调了数据采集的多种方式和数据关联的重要性。此外,还提到了开源工具DevLake在数据源和数据展现层的应用。

本文正文内容共计2215字,建议阅读时间:4-5分钟。

阅读本文你将收获:

1、研发效能度量平台整体架构有哪几部分构成;

2、软件研发效能开源工具与平台推荐

作者简介

董海炜,百度 移动生态事业群组质量研发效能平台部 技术委员会负责人,2007年加入百度质量部,长期以来主要从事自动化测试、持续集成、devops、云原生质量保障相关技术领域。现在负责部门的质效中台方向,全面推动质效技术的云原生、产品化改造。

本文来源董海炜老师的研发效能系列文章,本文全篇收录于QECon组委会发布的白皮书之《研发效能实践指南

01. 研发效能度量平台整体架构

平台的主要作用便是将各种需求、研发、测试过程的离散数据进行有机的组合计算,最终形成各种客观指标数据,再配合多种展现方式,形成直观的数据看板和数据分析能力。具体来说,研发效能度量平台主要包含以下内容:

●离散数据的采集存储:需求、研发、测试涉及多个环节和工具,各方数据都是离散的数据,因此首先要解决如何方便的进行离散数据的采集和存储

●数据计算:主要解决如何将离散的数据进行有机组合,最终形成质效评估的指标数据

●数据展现和分析:指标数据需要通过多种展现和分析方法,才能便于用户发现和分析问题,因此如何展现和分析,也需要度量平台合理设计一个典型的研发效能度量平台的架构设计图如下所示

DevOps研发效能度量是通过对研发团队在采用DevOps实施过程中的工作进行量化和评估,来衡量其开发效率和质量的一种方法。以下是一些可能的DevOps研发效能度量指标。 1. 缺陷率:衡量开发团队在开发过程中引入的缺陷数量和质量,可以通过统计每个版本或每个周期内的缺陷数来计算。较低的缺陷率表示团队在开发过程中更加注重质量。 2. 代码提交频率:衡量团队在相同时间内提交的代码数量。较高的提交频率可能表示团队正在持续交付新功能和修复问题。 3. 开发周期:衡量从需求到产品交付的时间。较短的开发周期意味着团队能够更快地将新功能推向市场。 4. 自动化比例:衡量团队在开发过程中实施自动化的程度。自动化包括自动化测试、自动化部署等。较高的自动化比例可以提高开发效率和质量。 5. 故障恢复时间:衡量团队在发生故障时恢复系统正常运行所需的时间。较短的故障恢复时间表示团队具备快速问题排查和修复的能力。 6. 团队合作度:衡量团队成员之间的合作和协作程度。可以通过观察团队成员之间的沟通和交流来评估。 7. 反馈时间:衡量团队在接收到用户需求或反馈后,提供相应反馈的时间。较短的反馈时间可以满足用户的需求,提高用户满意度。 通过对这些指标的监测和分析,可以帮助团队了解其在DevOps实施中的效果,并确定改进的方向和措施,以提高研发效能和团队整体绩效。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值