Keras关于训练冻结部分层

本文介绍在深度学习模型训练中如何有效利用冻结层技巧。通过在模型搭建阶段直接设置某层的trainable属性为false,或者在模型搭建完成后遍历所有层并根据层名或位置设置trainable属性,可以实现对特定层的冻结,避免其参数更新。此外,还讨论了在分类数量变化时如何利用层名和分类数量关联,确保权重加载正确。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录


设置冻结层有两种方式。

  1. (不推荐)是在搭建网络时,直接将某层的trainable设置为false,例如:
layers.Conv2D(filters1, (1, 1), trainable=False)(input_tensor)
  1. 在网络搭建完成时,遍历model.layer,然后将layer.trainable设置为False:
# 冻结网络倒数的3层
for layer in model.layers[:-3]:
    print(layer.trainable)
    layer.trainable = False

也可以根据layer.name来确定哪些层需要冻结,例如冻结最后一层和RNN层:

for layer in model.layers:
	layerName=str(layer.name)
	if layerName.startswith("RNN_") or layerName.startswith("Final_"):
		layer.trainable=False

在网络搭建时,可以考虑最后一个分类层命名和分类数量关联,这样当分类数量方式变化时,model.load_weight(“weight.h5”,by_name=True)不会加载最后一层

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值