python--批量分析xml标签中各个类别个数

本文介绍了一个使用Python多进程技术分析XML文件并验证对应图像完整性的脚本。该脚本能够遍历指定目录下的所有XML文件,统计每个目标对象的数量,并检查相关联的JPEG图像是否完整。通过并行处理提高效率,适用于大规模数据集的快速分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录


需要个脚本分析下各个目标的数目 顺带练习下多进程,自用,直接上代码:

# -*- coding: utf-8 -*-
# @Time    : 2019/06/10 18:56
# @Author  : TuanZhangSama

import os
import xml.etree.ElementTree as ET
from multiprocessing import Pool,freeze_support,cpu_count
import imghdr
import logging

def get_all_xml_path(xml_dir:str,filter=['.xml']):
    #遍历文件夹下所有xml
    result=[]
    #maindir是当前搜索的目录 subdir是当前目录下的文件夹名 file是目录下文件名
    for maindir,subdir,file_name_list in os.walk(xml_dir):
        for filename in file_name_list:
            ext=os.path.splitext(filename)[1]#返回扩展名
            if ext in filter:
                result.append(os.path.join(maindir,filename))
    return result
    
def analysis_xml(xml_path:str):
    tree=ET.parse(xml_path)
    root=tree.getroot()
    result_dict={}
    for obj in root.findall('object'):
        obj_name = obj.find('name').text
        obj_num=result_dict.get(obj_name,0)+1
        result_dict[obj_name]=obj_num
    if imghdr.what(xml_path.replace('.xml','.jpg')) != 'jpeg':
        print(xml_path.replace('.xml','.jpg'),'is worng')
        # logging.info(xml_path.replace('.xml','.jpg'))
    if is_valid_jpg(xml_path.replace('.xml','.jpg')):
        pass
    return result_dict

def analysis_xmls_batch(xmls_path_list:list):
    result_list=[]
    for i in xmls_path_list:
        result_list.append(analysis_xml(i))
    return result_list

def collect_result(result_list:list):
    all_result_dict={}
    for result_dict in result_list:
        for key,values in result_dict.items():
            obj_num=all_result_dict.get(key,0)+values
            all_result_dict[key]=obj_num
    return all_result_dict

def main(xml_dir:str,result_save_path:str =None):
    r'''根据xml文件统计所有样本的数目.对于文件不完整的图片和有xml但无图片的样本,直接进行删除.默认跑满所有的cpu核心
    
    Parameters
    ----------
    xml_dir : str
        xml所在的文件夹.用的递归形式,因此只需保证xml在此目录的子目录下即可.对应的图片和其xml要在同一目录
    
    result_save_path : str
        分析结果的日志保存路径.默认 None 无日志
    '''
    if result_save_path is not None:
        assert isinstance(result_save_path,str),'{} is illegal path'.format(result_save_path)
    else:
        logging.basicConfig(filename=result_save_path,filemode='w',level=logging.INFO)
    freeze_support()#windows 上用
    xmls_path=get_all_xml_path(xml_dir)
    worker_num=cpu_count()
    print('your CPU num is',cpu_count())
    length=float(len(xmls_path))/float(worker_num)
    #计算下标,尽可能均匀地划分输入文件的列表
    indices=[int(round(i*length)) for i in range(worker_num+1)]

    #生成每个进程要处理的子文件列表
    sublists=[xmls_path[indices[i]:indices[i+1]] for i in range(worker_num)]
    pool=Pool(processes=worker_num)

    all_process_result_list=[]
    for i in range(worker_num):
        all_process_result_list.append(pool.apply_async(analysis_xmls_batch,args=(sublists[i],)))
    pool.close()
    pool.join()
    print('analysis done!')
    _temp_list=[]
    for i in all_process_result_list:
        _temp_list=_temp_list+i.get()
    result=collect_result(_temp_list)
    logging.info(result)
    print(result)

def is_valid_jpg(jpg_file):
    """判断JPG文件下载是否完整     """
    if not os.path.exists(jpg_file):
        print(jpg_file,'is not existes')
        os.remove(jpg_file.replace('.jpg','.xml'))
    with open(jpg_file, 'rb') as fr:
        fr.seek(-2, 2)
        if fr.read() == b'\xff\xd9':
            return True
        else:
            os.remove(jpg_file)
            os.remove(jpg_file.replace('.jpg','.xml'))
            print(jpg_file)
            logging.error(jpg_file,'is imperfect img')
            return False

if __name__=='__main__':
    test_dir='/home/chiebotgpuhq/Share/winshare/origin'
    save_path='/home/chiebotgpuhq/MyCode/python/pytorch/mmdetection-master/result.log'
    main(test_dir,save_path)
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值