python @ 操作符

本文探讨了Python中@运算符在矩阵乘法中的使用,它不仅等效于传统的'mul'操作,还能处理高维矩阵与低维矩阵的乘法,为深度学习和数据科学提供便利。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

python的@ 除了用在装饰器上,还可以用在矩阵操作。
效果大概等同于mul。

ea = torch.randn(2,3)
eb = torch.randn(3,2)
ea.mm(eb)
ea@eb

输出结果为:

tensor([[-0.4561,  0.5820],
        [-1.6594, -3.1745]])
tensor([[-0.4561,  0.5820],
        [-1.6594, -3.1745]])

但是,如果ea是三维矩阵而eb还是二维矩阵,这时候mm就会报错。
mm报错
而@ 操作符:
@操作
@ 操作符号能把ea第一维的每一个矩阵和eb相乘。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值