我对声纹识别的认识|简记

本文深入探讨了声纹识别技术的核心流程,包括数据准备、预处理、特征提取、建模选择及评分决策等关键环节。介绍了从训练到识别的全过程,涵盖了预加重、MFCC特征提取、PLDA评分决策等技术细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

通常的声纹识别研究相关模型包含:预处理、特征提取、建模选择和评分决策。整个过程分为两大步骤,训练和识别。训练是通过对说话人注册来提取语音特征进而建立说话人声纹模版库,测试识别是将待测试语音的模版参数与声纹库中的声纹模版进行比对识别。

  • 数据准备(数据集的选取、音频信噪比、截幅检测)
  • 预处理(预加重、分帧加窗和语音端点检测)
  • 特征提取(语谱图、MFCC)
  • 建模选择(模型和损失函数)
  • 评分决策(PLDA、cos)

持续补充中…


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

墨理学AI

不必打赏,关注博主公众号即可

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值