PAT 1136.A Delayed Palindrome(20 分)回文

本文介绍了一种算法,用于找到任意正整数对应的回文数。通过将非回文数与其反转数相加,重复此过程直到得到回文数。文章提供了完整的代码实现,并展示了两个示例输入及其输出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Consider a positive integer N written in standard notation with k+1 digits a​i​​ as a​k​​⋯a​1​​a​0​​ with 0≤a​i​​<10 for all i and a​k​​>0. Then N is palindromic if and only if a​i​​=a​k−i​​ for all i. Zero is written 0 and is also palindromic by definition.

Non-palindromic numbers can be paired with palindromic ones via a series of operations. First, the non-palindromic number is reversed and the result is added to the original number. If the result is not a palindromic number, this is repeated until it gives a palindromic number. Such number is called a delayed palindrome. (Quoted from https://en.wikipedia.org/wiki/Palindromic_number )

Given any positive integer, you are supposed to find its paired palindromic number.

Input Specification:

Each input file contains one test case which gives a positive integer no more than 1000 digits.

Output Specification:

For each test case, print line by line the process of finding the palindromic number. The format of each line is the following:

A + B = C

where A is the original number, B is the reversed A, and C is their sum. A starts being the input number, and this process ends until C becomes a palindromic number -- in this case we print in the last line C is a palindromic number.; or if a palindromic number cannot be found in 10 iterations, print Not found in 10 iterations. instead.

Sample Input 1:

97152

Sample Output 1:

97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.

Sample Input 2:

196

Sample Output 2:

196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.

 

#include <iostream>
#include <algorithm>
using namespace std;
string add(string a) {
    string b = a, ans;
    reverse(b.begin(), b.end());
    int len = a.length(), carry = 0;
    for (int i = 0; i < len; i++) {
        int num = (a[i] - '0' + b[i] - '0') + carry;
        carry = 0;
        if (num >= 10) {
            carry = 1;
            num = num - 10;
        }
        ans += char(num + '0');
    }
    if(carry == 1) ans += '1';
    reverse(ans.begin(), ans.end());
    return ans;
}
int main() {
    string s;
    cin >> s;
    int cnt = 0;
    while (cnt < 10) {
        string t = s;
        reverse(t.begin(), t.end());
        if (t == s) {
            cout << s << " is a palindromic number.";
            break;
        } else {
            cout << s << " + " << t << " = " << add(s) << endl;
            s = add(s);
            cnt++;
        }
    }
    if (cnt == 10) cout << "Not found in 10 iterations.";
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值