The "Hamilton cycle problem" is to find a simple cycle that contains every vertex in a graph. Such a cycle is called a "Hamiltonian cycle".
In this problem, you are supposed to tell if a given cycle is a Hamiltonian cycle.
Input Specification:
Each input file contains one test case. For each case, the first line contains 2 positive integers N (2<N≤200), the number of vertices, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format Vertex1 Vertex2
, where the vertices are numbered from 1 to N. The next line gives a positive integer K which is the number of queries, followed by K lines of queries, each in the format:
n V1 V2 ... Vn
where n is the number of vertices in the list, and Vi's are the vertices on a path.
Output Specification:
For each query, print in a line YES
if the path does form a Hamiltonian cycle, or NO
if not.
Sample Input:
6 10
6 2
3 4
1 5
2 5
3 1
4 1
1 6
6 3
1 2
4 5
6
7 5 1 4 3 6 2 5
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 3 4 5 2 6
7 6 1 2 5 4 3 1
Sample Output:
YES
NO
NO
NO
YES
NO
#include <cstdio>
#include <vector>
using namespace std;
int n, kn;
vector<int> v;
vector<vector<int>> graph;
int isConnected() {
int pre = v[0];
for (int i = 1; i < kn; i++) {
if (graph[pre][v[i]] != 1) return 0;
pre = v[i];
}
return 1;
}
int isHamilt() {
if (v[0] != v[kn-1]) return 0;
vector<int> times(kn, 0);
for (int i = 0; i < kn; i++)
times[v[i]]++;
for (int i = 1; i < kn; i++)
if ((i == v[0] && times[i] != 2) || (i != v[0] && times[i] != 1)) return 0;
return 1;
}
int main() {
int m, k, a, b;
scanf("%d %d", &n, &m);
graph.resize(n+1, vector<int>(n+1, 0));
for (int i = 0; i < m; i++) {
scanf("%d %d", &a, &b);
graph[a][b] = graph[b][a] = 1;
}
scanf("%d", &k);
for (int i = 0; i < k; i++) {
scanf("%d", &kn);
v.resize(kn);
for (int j = 0; j < kn; j++)
scanf("%d", &v[j]);
printf("%s\n", (kn == n + 1 && isConnected() && isHamilt()) ? "YES" : "NO");
}
return 0;
}