PAT 1122.Hamiltonian Cycle(25 分

本文深入探讨了哈密顿回路问题,即在一个无向图中找到包含所有顶点的简单环路。通过实例输入输出解析,详细介绍了如何判断给定路径是否构成哈密顿回路,涉及图的连接性和哈密顿性质的验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The "Hamilton cycle problem" is to find a simple cycle that contains every vertex in a graph. Such a cycle is called a "Hamiltonian cycle".

In this problem, you are supposed to tell if a given cycle is a Hamiltonian cycle.

Input Specification:

Each input file contains one test case. For each case, the first line contains 2 positive integers N (2<N≤200), the number of vertices, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format Vertex1 Vertex2, where the vertices are numbered from 1 to N. The next line gives a positive integer K which is the number of queries, followed by K lines of queries, each in the format:

n V​1​​ V​2​​ ... V​n​​

where n is the number of vertices in the list, and V​i​​'s are the vertices on a path.

Output Specification:

For each query, print in a line YES if the path does form a Hamiltonian cycle, or NO if not.

Sample Input:

6 10
6 2
3 4
1 5
2 5
3 1
4 1
1 6
6 3
1 2
4 5
6
7 5 1 4 3 6 2 5
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 3 4 5 2 6
7 6 1 2 5 4 3 1

Sample Output:

YES
NO
NO
NO
YES
NO
#include <cstdio>
#include <vector>
using namespace std;
int n, kn;
vector<int> v;
vector<vector<int>> graph;
int isConnected() {
    int pre = v[0];
    for (int i = 1; i < kn; i++) {
        if (graph[pre][v[i]] != 1) return 0;
        pre = v[i];
    }
    return 1;
}
int isHamilt() {
    if (v[0] != v[kn-1]) return 0;
    vector<int> times(kn, 0);
    for (int i = 0; i < kn; i++)
        times[v[i]]++;
    for (int i = 1; i < kn; i++)
        if ((i == v[0] && times[i] != 2) || (i != v[0] && times[i] != 1)) return 0;
    return 1;
}
int main() {
    int m, k, a, b;
    scanf("%d %d", &n, &m);
    graph.resize(n+1, vector<int>(n+1, 0));
    for (int i = 0; i < m; i++) {
        scanf("%d %d", &a, &b);
        graph[a][b] = graph[b][a] = 1;
    }
    scanf("%d", &k);
    for (int i = 0; i < k; i++) {
        scanf("%d", &kn);
        v.resize(kn);
        for (int j = 0; j < kn; j++)
            scanf("%d", &v[j]);
        printf("%s\n", (kn == n + 1 && isConnected() && isHamilt()) ? "YES" : "NO");
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值