tensorflow 官方示例

本文介绍了多种机器学习模型的应用实例,包括手写图像识别、花卉种类预测及房价估算等。涉及的技术涵盖传统机器学习算法如逻辑回归和支持向量机,以及深度学习技术如卷积神经网络。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、手写图像识别(分类)
x图像[none,780],w权重[780,10]
输入图像矩阵–采用softmax(多项式逻辑)回归模型–通过交叉熵计算损失

2、卷积神经网络
输入图像–卷积conv2d(x, W)(突出特征)-池化max_pool_2x2(x)(减少特征数量)

3、手写图像的前馈神经网络流程
输入图像–隐藏层1 nn.relu(w,b)–隐藏层2 nn.relu(n1,b)–softmax回归分类–loss 交叉熵

4、由花片和花瓣的长宽预测花种(分类)
直接利用tf.contrib.learn.DNNClassifier模型实现分类

5、房屋价格(回归)
tf.contrib.learn.DNNRegressor

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值