PRML Ch3: Linear Models For Regression 线性回归模型

本文从统计和贝叶斯两个角度出发,深入探讨了线性回归模型的建立过程。统计角度通过最大似然估计推导出参数估计,而贝叶斯角度则考虑参数的不确定性,通过后验分布进行点估计或完全贝叶斯估计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性回归模型可以从第一章的决策论一节中的loss function for regression讲起,当我们已经有关于回归目标t的条件分布p(t|x)时,如果选取L2 loss为loss function,那么通过变分的方法最小化期望误差,可以得出我们的回归函数应该为Et[t|x],即概率分布P(t|x)关于t的期望。但是这个结论并不能直接应用,因为我们并不知道关于t的条件分布p(t|x)
在一般的回归任务中,我们的目标是使用(x,t)的二元组样本数据集D,来估计出p(t|x)

统计角度的线性回归模型

线性回归模型假设数据是这么产生的:t=wTx+ϵ. 其中ϵ是一个服从(0,σ)的随机噪声,那么观测到目标t服从的分布为p(t|x)(wTx,σ). 使用最大似然方法求w即最大化:

P(D|w)=x(wTx,σ),
取对数再去掉常数项即:

1σx(txwTx)2,

由此可见使用最大似然估计线性回归模型的参数w就是在最小化均方误差。

贝叶斯角度的线性回归模型

PRML这本书的主视角是贝叶斯角度,贝叶斯角度的线性回归和统计角度的线性回归有何不同呢?这两个角度的线性回归都是假定数据由t=wTx+ϵ产生,但是统计角度的线性回归认为w是固定的,当我们有了一份观测数据后,我们就可以用这些数据去估计出一个w的值。实时上在大多数的实际任务中,我们也确实只需要一个w的值,就可以得到P(t|x)了。
但是贝叶斯角度中,w也是一个随机变量,它也服从一个概率分布。我们通过数据集并不能确定出w的值,而只能确定一个w分布情况。如果认为w也是随机变量,那么根据贝叶斯公式,我们有关于w的后验分布:

p(w|D)=p(D|w)p(w)p(D|w)p(w)dw.

p(D|w)是上面似然函数,p(w)w的先验分布(第二章讲了如何构造共轭先验)。分母是P(D),是关于w的常数。有了关于w的后验分布,我们同样可以对w做一个点估计,求出一个w的值。点估计的方法可以是求使得p(w|D)最大的w的值,这种估计方法称为最大后验方法。 当然,我们也可以用p(w|D)的期望作为w的估计值。但是当我们使用高斯先验时,P(w|D)服从高斯分布,这两个值恰好是相同的,即高斯分布的均值。

上面介绍的最大后验方法,仍然是在点估计参数w,本质上与最大似然加约束项的方法等价,所以在贝叶斯机器学习中,又被称为poor man’s bayesian。
更加完备的贝叶斯方法是fully bayesian和empirical bayesian. 这两种方法的思想是,我们在有了关于w的后验分布后,在做回归预测时,并不直接带入一个w的值,而是使用w的概率,fully bayesian用公式表达就是:

p(t|x,D)=p(t|x,w,σ)p(w|D,α,σ)p(α,σ|D)dwdασ

然而这样对参数、超参数共同积分的方法往往是没有解析结果的,所以我们可以使用稍微弱化一些的方法:empirical bayesian,在书中称为evidence approximation, 又称为type 2 marignal likelihood. 这种方法先对超参数进行点估计,然后将估计出的超参数直接带入fully bayesian的公式中。如果我们假定p(α,σ|D)是一个类似脉冲的概率分布,即所有的概率集中在一个点(α̂ ,σ̂ )上,那么:
p(t|x,D)=p(t|x,D,α̂ ,σ̂ )=p(t|x,w,σ̂ )p(w|D,α̂ ,σ̂ )dw,

即我们将估计好的(α̂ ,σ̂ )带入到公式中,直接得到预测模型。估计超参数的方法同样是最大化超参数的后验概率:
p(α,σ|D)p(D|α,σ)p(α,σ),

不过,如果我们假设超参数的先验概率分布p(α,σ)非常平坦,那么最大后验估计等同于最大化p(D|α,σ), 这个概率和统计方法中的最大化似然函数P(D|w)是不是很像?区别在于,最大似然是数据集在参数w下观测到条件概率,而p(D|α,σ)是数据集在超参数(α,σ)下观测到的条件概率。故这个概率被称为marginal likelihood. 写出这个概率的表达式:
p(D|α,σ)=p(D|w,σ)p(w|α)dw

α,σ求导,求出极值点,即为我们对超参数的点估计。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值