YOLOv1 到 YOLOv12汇总信息2025.6.4

以下是 YOLOv1 到 YOLOv12 的详细信息汇总:

YOLOv1

  • 提出时间:2015 年 12 月。
  • 提出团队:Joseph Redmon 等。
  • 骨干网络:简化的 CNN 骨干网络。
  • 特征融合方式:无。
  • 激活函数:LeakyReLU。
  • 训练技巧:随机梯度下降,非极大值抑制 (NMS)。
  • 参数量:约 6200 万。
  • 速度:约 45FPS。
  • 精度:一般。
  • 硬件部署情况:可在普通 GPU 上运行。
  • GitHub 地址:无开源实现,原论文地址为https://arxiv.org/abs/1506.02640

YOLOv2

  • 提出时间:2016 年 12 月。
  • 提出团队:Joseph Redmon 等。
  • 骨干网络:DarkNet-19。
  • 特征融合方式:无。
  • 激活函数:LeakyReLU。
  • 训练技巧:带动量的 SGD,超参数调优,Adam 优化器。
  • 参数量:约 3400 万。
  • 速度:约 120FPS(V2 tiny 版本)。
  • 精度:比 YOLOv1 有显著提高。
  • 硬件部署情况:可在普通 GPU 上运行。
  • GitHub 地址:https://github.com/pjreddie/darknet
    在这里插入图片描述

YOLOv3

  • 提出时间:2018 年 4 月。
  • 提出团队:Joseph Redmon 等。
  • 骨干网络:DarkNet-53。
  • 特征融合方式:多尺度预测。
  • 激活函数:LeakyReLU。
  • 训练技巧:Mix-up,数据增强,噪声。
  • 参数量:约 6100 万。
  • 速度:约 50FPS。
  • 精度:比 YOLOv2 更高。
  • 硬件部署情况:可在中高端 GPU 上运行。
  • GitHub 地址:https://github.com/pjreddie/darknet

YOLOv4

  • 提出时间:2020 年 4 月。
  • 提出团队:Alexey Bochkovskiy 等。
  • 骨干网络:CSPDarkNet-53。
  • 特征融合方式:PANet。
  • 激活函数:Mish。
  • 训练技巧:CutMix 和 Mosaic 数据增强等。
  • 参数量:约 2000 万。
  • 速度:约 65FPS。
  • 精度:较高。
  • 硬件部署情况:可在中高端 GPU 上运行。
  • GitHub 地址:https://github.com/AlexeyAB/darknet

YOLOv5

YOLOv6

  • 提出时间:2022 年 6 月。
  • 提出团队:MEGVII 基础模型团队。
  • 骨干网络:PANet,CSPDarkNet53。
  • 特征融合方式:BiFPN。
  • 激活函数:SiLU。
  • 训练技巧:对抗训练,领域特定的数据增强。
  • 参数量:约 3500 万。
  • 速度:约 160FPS。
  • 精度:较好。
  • 硬件部署情况:可在多种硬件平台运行。
  • GitHub 地址:https://github.com/meituan/YOLOv6

YOLOv7

  • 提出时间:2022 年 9 月。
  • 提出团队:WongKinYiu。
  • 骨干网络:EfficientRep 骨干网络。
  • 特征融合方式:动态标签分配。
  • 激活函数:ReLU。
  • 训练技巧:微调,对抗补丁检测。
  • 参数量:约 4000 万。
  • 速度:约 120FPS。
  • 精度:较高。
  • 硬件部署情况:可在多种硬件平台运行。
  • GitHub 地址:https://github.com/WongKinYiu/yolov7

YOLOv8

YOLOv9

  • 提出时间:2024 年 2 月。
  • 提出团队:WongKinYiu 等。
  • 骨干网络:广义高效层聚合网络 (GELAN)。
  • 特征融合方式:可编程梯度信息 (PGI)。
  • 激活函数:ReLU。
  • 训练技巧:微调,领域特定的数据增强。
  • 参数量:相比 YOLOv8 减少了 49%。
  • 速度:约 100FPS。
  • 精度:在 MS COCO 数据集上 AP 有 0.6% 的改进。
  • 硬件部署情况:可在多种硬件平台运行。
  • GitHub 地址:https://github.com/WongKinYiu/yolov9

YOLOv10

  • 提出时间:2024 年 5 月。
  • 提出团队:清华大学。
  • 骨干网络:轻量级分类头和分离的空间与通道变换。
  • 特征融合方式:在下采样阶段通过分离的空间与通道变换提高整体效率。
  • 激活函数:未明确指出。
  • 训练技巧:无 NMS 训练,双重标签分配。
  • 参数量:未明确给出。
  • 速度:约 120FPS。
  • 精度:较好。
  • 硬件部署情况:可在多种硬件平台运行。
  • GitHub 地址:https://github.com/THU-MIG/yolov10

YOLOv11

  • 提出时间:2024 年 9 月。
  • 提出团队:Ultralytics。
  • 骨干网络:C3k2 块,C2PSA。
  • 特征融合方式:增强空间注意力。
  • 激活函数:未明确指出。
  • 训练技巧:微调,Mix-up,数据增强,自适应梯度裁剪。
  • 参数量:相比 YOLOv8 同等精度下降低 20%。
  • 速度:约 110FPS。
  • 精度:较好。
  • 硬件部署情况:可适配从边缘设备到云 API 等不同硬件平台。
  • GitHub 地址:https://github.com/ultralytics/ultralytics
    在这里插入图片描述

YOLOv12

  • 提出时间:2025 年 3 月。
  • 提出团队:sunsmarterjie。
  • 骨干网络:区域注意力模块(area attention, A2),残差高效层聚合网络(R-ELAN)。
  • 特征融合方式:FlashAttention,卷积实现注意力。
  • 激活函数:未明确指出。
  • 训练技巧:Mosaic、Mixup 和复制粘贴增强等。
  • 参数量:未明确给出。
  • 速度:约 90FPS。
  • 精度:在速度和性能上取得新的突破。
  • 硬件部署情况:可适配多种硬件平台。
  • GitHub 地址:https://github.com/sunsmarterjie/yolov12
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mozun2020

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值