python --几种排序

本文介绍了Python中的五种排序算法:冒泡排序、选择排序、插入排序、快速排序和希尔排序。详细阐述了每种排序算法的思路、时间复杂度和稳定性,并给出了实例分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

1、冒泡排序

思路:循环两趟,遍历列表,一次比较两个元素,如果前一个大于后一个,则交换位置

  • 最优时间复杂度:O(n) (表示遍历一次发现没有任何可以交换的元素,排序结束。)
  • 最坏时间复杂度:O(n^{2})
  • 稳定性:稳定

2、选择排序

思路:在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

 

3、插入排序

思路:通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

4、快速排序

思路: 从数列中挑出一个元素,称为"基准"(pivot),重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区结束之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

 

  • 最优时间复杂度:O(n^{2})
  • 最坏时间复杂度:O(n^{2})
  • 稳定性:不稳定(考虑升序每次选择最大的情况)
  • 最优时间复杂度:O(n) (升序排列,序列已经处于升序状态)
  • 最坏时间复杂度:O(n^{2}​​​​​​​)
  • 稳定性:稳定
  • 最优时间复杂度:O(nlogn)
  • 最坏时间复杂度:O(n^{2})
  • 稳定性:不稳定

5、希尔排序

思路:将数组列在一个表中并对列分别进行插入排序,重复这过程,不过每次用更长的列(步长更长了,列数更少了)来进行。

例如,假设有这样一组数[ 13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10 ],如果我们以步长为5开始进行排序,我们可以通过将这列表放在有5列的表中来更好地描述算法,这样他们就应该看起来是这样(竖着的元素是步长组成):

13 14 94 33 82
25 59 94 65 23
45 27 73 25 39
10

然后我们对每列进行排序:

10 14 73 25 23
13 27 94 33 39
25 59 94 65 82
45

将上述四行数字,依序接在一起时我们得到:[ 10 14 73 25 23 13 27 94 33 39 25 59 94 65 82 45 ]。这时10已经移至正确位置了,然后再以3为步长进行排序:

10 14 73
25 23 13
27 94 33
39 25 59
94 65 82
45

排序之后变为:

10 14 13
25 23 33
27 25 59
39 65 73
45 94 82
94

最后以1步长进行排序(此时就是简单的插入排序了) 

 

  • 最优时间复杂度:根据步长序列的不同而不同
  • 最坏时间复杂度:O(n2)
  • 稳定想:不稳定

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值