台大李宏毅机器学习2020学习笔记(一):机器学习简介

前言


         去年走马观花式的听了一遍台大李宏毅老师的Machine Learning 2019,觉得老师讲的很好。于是打算今年细致的听一遍Machine Learning 2020,并做一份完整的笔记。前言就写这么多,从此开始吧。


机器学习内涵


        机器学习(Machine Learning),就是让机器自动找函数。如语音识别,就是让机器找一个函数,输入是声音信号,输出是对应的文字。如下棋,就是让机器找一个函数,输入是当前棋盘上黑子白子的位置,输出是下一步应该落子何处。


机器学习任务——我们想要机器找什么样的函数


  •  回归(regression)

        输出是数值。如房价、PM2.5预测。

  •  二元分类(binary classification)

        输出只有两种可能,正面或负面。

  •  多元分类(multi-class classification)

        输出当前输入属于既定N个类别的概率值,并将N个概率值中最大者所对应的类别作为正确答案。

  • 生成(generation)

        输出有结构的复杂东西。如翻译,画图。


机器学习分类-告诉机器我们想要什么样的函数


  • 监督学习(supervised learning)

        如果期望机器对每一次输入都给出理想的答案,就涉及监督学习,其中分类和回归都属于监督学习。监督学习在训练时不仅需要给机器数据,同时还要给标签(label),标签即期望的正确答案,如下图(引自课程演示文稿),其中x即输入图片,y即标签。

                           

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值