前言
去年走马观花式的听了一遍台大李宏毅老师的Machine Learning 2019,觉得老师讲的很好。于是打算今年细致的听一遍Machine Learning 2020,并做一份完整的笔记。前言就写这么多,从此开始吧。
机器学习内涵
机器学习(Machine Learning),就是让机器自动找函数。如语音识别,就是让机器找一个函数,输入是声音信号,输出是对应的文字。如下棋,就是让机器找一个函数,输入是当前棋盘上黑子白子的位置,输出是下一步应该落子何处。
机器学习任务——我们想要机器找什么样的函数
- 回归(regression)
输出是数值。如房价、PM2.5预测。
- 二元分类(binary classification)
输出只有两种可能,正面或负面。
- 多元分类(multi-class classification)
输出当前输入属于既定N个类别的概率值,并将N个概率值中最大者所对应的类别作为正确答案。
- 生成(generation)
输出有结构的复杂东西。如翻译,画图。
机器学习分类-告诉机器我们想要什么样的函数
- 监督学习(supervised learning)
如果期望机器对每一次输入都给出理想的答案,就涉及监督学习,其中分类和回归都属于监督学习。监督学习在训练时不仅需要给机器数据,同时还要给标签(label),标签即期望的正确答案,如下图(引自课程演示文稿),其中x即输入图片,y即标签。