深度学习中的标签平滑正则化(Label Smoothing Regularization)方法原理详解

标签平滑正则化(LSR)用于解决深度学习中过度依赖正确标签的问题,通过引入平滑因子使得模型考虑错误标签的损失,提高泛化能力。LSR公式为y'=(1-ϵ)*y+ϵ*u,其中y是原始one-hot标签,u是均匀分布,ϵ是平滑因子。这种方法可以应用于涉及交叉熵损失的场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文https://arxiv.org/pdf/1512.00567.pdf

(一)、为什么有标签平滑正则化(Label Smoothing Regularization, LSR)的方法?
在深度学习样本训练的过程中,我们采用one-hot标签去进行计算交叉熵损失时,只考虑到训练样本中正确的标签位置(one-hot标签为1的位置)的损失,而忽略了错误标签位置(one-hot标签为0的位置)的损失。这样一来,模型可以在训练集上拟合的很好,但由于其他错误标签位置的损失没有计算,导致预测的时候,预测错误的概率增大。为了解决这一问题,标签平滑的正则化方法便应运而生。

(二)、标签平滑是如何实现的?
(1). 传统的softmax公式如下: p i = e z i ∑ i = 1 n e z i (2.1) {p_{i}=\frac{e^{z_i}}{\sum_{i=1}^n{e^{z_i}}}\tag{2.1}} pi=i=1neziezi(2.1)其中 p i p_i pi为当前样本属于类别 i i i的概率, z i z_i zi指的是当前样本的对应类别 i i i l o g i t logit logit n n n为样本类别总数,则我们可以得到交叉熵(cross entropy)损失: l o s s = − 1 m ∑ k = 1 m ∑ i = 1 n y i l o g p i (2.2) {loss=-\frac{1}{m}\sum_{k=1}^m\sum_{i=1}^n{y_ilogp_i}\tag{2.2}} loss=m1k=1m

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值