论文阅读------Stochastic Gradient Descent with Differentially Private updates

本文探讨了在深度学习中应用Stochastic Gradient Descent(SGD)时,如何通过添加差分隐私更新来保护数据。文章详细介绍了SGD的训练过程,包括代价函数、正则化、梯度计算和参数更新。接着,讨论了差分隐私SGD的条件、动态调节以及在实验中观察到的批次大小和学习率对隐私保护效果的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SGD

代价函数

对于不同批量数量不一的数据,使用相同的代价函数求和进行激励计算,具体的函数描述为: 1 n ∑ i = 1 n l ( w , x i , y i ) \frac{1}{n}\sum_{i=1}^n l(w,x_i,y_i) n1i=1nl(w,xi,yi)

正则化描述

使用范式对其进行正则化,分为 L 1 L1 L1正则化与 L 2 L2 L2正则化,于是对w进行正则化后得到的结果为:(使用的是 L 2 L2 L2正则化)

w ∗ = λ 2 ∣ ∣ w ∣ ∣ 2 + 1 n ∑ i = 1 n l ( w , x i , y i ) w^*=\frac{\lambda}{2}||w||^2+\frac{1}{n}\sum_{i=1}^n l(w,x_i,y_i) w=2λw2+n1i=1nl(w,xi,yi)
这里的 λ \lambda λ为正则化参数, w ∗ w^* w为在损失函数约束下的 L 2 L2 L2正则化。

训练过程

目标是让代价函数最小,于是具体的过程为:
min ⁡ ( 1 n ∑ i = 1 n l ( w , x i , y i ) ) \min(\frac{1}{n}\sum_{i=1}^n l(w,x_i,y_i)) min(n1i=1nl(w,xi,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值