BPSO-Discrete optimization(2)

本文介绍了使用BPSO(Binary Particle Swarm Optimization)算法解决一个离散优化问题,目标函数为o=sum(D_(x).^2),其中x取值为0或1,D_(x)取值为10, 20, 30, 40。文章提供了BPSO.m和ObjectiveFunction.m两个文件的目录,并分享了作者在实现过程中的两点心得:BPSO算法部分保持不变,而ObjectiveFunction.m中定义了x的长度为20,D_(x)的长度为10,通过for循环和switch语句将x与D_(x)对应起来进行计算。" 48898801,46905,Emacs 24.4.1 配置C++智能提示:ycmd与company-mode整合指南,"['emacs', 'c++', '开发工具']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述:

目标函数:o=sum(D_(x).^2),其中,x={0,1}; D_(x)={10,20,30,40}; 使用BPSO优化

文件目录:

BPSO.m

ObjectiveFunction.m

BPSO.m
clear all  
close all  
clc  
  
% Define the details of the binary optimization problem  
nVar = 20 ;   
ub =ones(1,nVar);  
lb = zeros(1,nVar);  
fobj = @ObjectiveFunction;   
  
% Define the PSO's paramters   
noP = 100;  
maxIter = 1000;  
wMax = 0.9;  
wMin = 0.2;  
c1 = 2;  
c2 = 2;  
vMax = (ub - lb) .* 0.2;   
vMin  = -vMax;  
  
% Initialize the particles   
for k = 1 : noP  
    Swarm.Particles(k).X = round ( (ub-lb) .* rand(1,nVar) + lb );   
    Swarm.Particles(k).V = zeros(1, nVar);   
    Swarm.Particles(k).PBEST.X = zeros(1,nVar);   
    Swarm.Particles(k).PBEST.O = inf;   
    Swarm.GBEST.X = zeros(1,nVar);  
    Swarm.GBEST.O = inf;  
end  
  
% Main loop  
for t = 1 : maxIter   
    %
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值