NL2SQL技术方案系列(3):大模型工具调用实战NL2API技术方案以及行业案例讲解1

本文介绍了NL2API技术在智能理财助手中的应用,重点讨论了如何利用大模型进行结构化检索,包括NL2SQL、API调用策略以及推理加速方案。文中提出了一种新的API调用表达形式,并分享了数据集构建、统一API协议、多API编排和推理加速的具体方法,展示了大模型在金融信息服务中的实际应用和挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【资源介绍】 1、该资源包括项目的全部源码,下载可以直接使用! 2、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业和毕设项目,也可以作为小白实战演练和初期项目立项演示的重要参考借鉴资料。 3、本资源作为“学习资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研和多多调试实践。 基于LLM大语言模型意图识别、参数抽取结合slot词槽技术实现多轮问答、NL2API. 打造Function Call多轮问答最佳实践.zip 基于LLM大语言模型意图识别、参数抽取结合slot词槽技术实现多轮问答、NL2API. 打造Function Call多轮问答最佳实践.zip 基于LLM大语言模型意图识别、参数抽取结合slot词槽技术实现多轮问答、NL2API. 打造Function Call多轮问答最佳实践.zip 基于LLM大语言模型意图识别、参数抽取结合slot词槽技术实现多轮问答、NL2API. 打造Function Call多轮问答最佳实践.zip 基于LLM大语言模型意图识别、参数抽取结合slot词槽技术实现多轮问答、NL2API. 打造Function Call多轮问答最佳实践.zip 基于LLM大语言模型意图识别、参数抽取结合slot词槽技术实现多轮问答、NL2API. 打造Function Call多轮问答最佳实践.zip 基于LLM大语言模型意图识别、参数抽取结合slot词槽技术实现多轮问答、NL2API. 打造Function Call多轮问答最佳实践.zip 基于LLM大语言模型意图识别、参数抽取结合slot词槽技术实现多轮问答、NL2API. 打造Function Call多轮问答最佳实践.zip 基于LLM大语言模型意图识别、参数抽取结合slot词槽技术实现多轮问答、NL2API. 打造Function Call多轮问答最佳实践.zip 基于LLM大语言模型意图识别、参数抽取结合slot词槽技术实现多轮问答、NL2API. 打造Function Call多轮问答最佳实践.zip 基于LLM大语言模型意图识别、参数抽取结合slot词槽技术实现多轮问答、NL2API. 打造Function Call多轮问答最佳实践.zip 基于LLM大语言模型意图识别、参数抽取结合slot词槽技术实现多轮问答、NL2API. 打造Function Call多轮问答最佳实践.zip
<think>好的,我现在需要帮助用户找到NL2SQL的实现案例和代码示例。用户之前已经询问过相关内容,所以我要确保回答结构清晰,并且参考提供的引用内容。 首先,查看用户提供的引用,引用1提到了SQL生成引擎、语法检查和安全性审查。引用23提到了具体的模型,如Chat2DB-GLM、InternLM2-SQL,以及示例代码。引用4提到了使用Dify和通义千问大模型。这些都是可能的案例来源。 用户需要的是实现案例和代码,所以我要从引用中提取相关的代码示例和项目。例如,引用3中的Python代码示例展示了如何初始化模型并生成SQL查询,这是一个很好的起点。此外,引用2提到了使用llama-2-13b-chat模型,并给出了克隆仓库的命令,这也需要包含进去。 接下来,我需要整理这些信息,分步骤说明如何实现NL2SQL。可能需要包括环境准备、模型选择、代码示例、应用案例和优化建议。同时,要确保代码部分使用正确的格式,比如Python代码块,并引用对应的来源。 还要注意用户提到的系统级指令,比如数学公式用$...$,但这里可能用不上。另外,生成相关问题,需要围绕实现案例、模型选择、代码调试、企业级应用和结果展示等方面提问。 最后,检查回答是否符合结构要求,引用是否正确标注,并确保所有信息来自提供的引用内容,避免引入外部知识。如果有不确定的地方,可能需要进一步确认,但根据现有引用,应该可以覆盖用户的需求。</think>### NL2SQL实现案例与代码示例 #### 一、实现步骤与核心组件 1. **自然语言理解(NLU)** 将用户输入的自然语言(如“查询2023年销售额超过1万的订单”)解析为结构化语义表示[^3]。 2. **SQL生成引擎** 基于规则或深度学习模型生成符合目标数据库语法的SQL语句,例如: ```sql SELECT * FROM orders WHERE year=2023 AND amount > 10000 ``` 3. **语法与逻辑验证** 使用静态分析工具(如SQL解析器)检查生成的SQL是否符合规范[^1]。 #### 二、代码实现案例 ##### 案例1:基于Python的基线实现(引用[3]) ```python # 环境准备:需安装nl2sql_baseline库 import nl2sql_baseline # 初始化模型 model = nl2sql_baseline.NL2SQLModel() # 输入自然语言问题 question = "展示2019年销售额最高的5个产品" # 生成SQL语句 sql_query = model.generate_sql(question) print(sql_query) # 输出:SELECT product_name FROM sales WHERE year=2019 ORDER BY revenue DESC LIMIT 5 ``` ##### 案例2:使用Llama-2大模型(引用[2]) ```bash # 克隆模型仓库 git clone https://www.modelscope.cn/CarbonAgent/llama-2-13b-chat.Q4.git # 调用示例 from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("llama-2-13b-chat") model = AutoModelForCausalLM.from_pretrained("llama-2-13b-chat") query = "统计北京地区上月库存量小于100的商品" inputs = tokenizer(query, return_tensors="pt") outputs = model.generate(inputs.input_ids) sql = tokenizer.decode(outputs[0]) # 输出:SELECT * FROM inventory WHERE location=&#39;北京&#39; AND stock < 100 AND date >= DATE_SUB(CURDATE(), INTERVAL 1 MONTH) ``` ##### 案例3:工业级Dify+通义千问集成(引用[4]) ```python # 通义千问API调用示例 import dashscope dashscope.api_key = &#39;YOUR_API_KEY&#39; response = dashscope.NL2SQL.call( model=&#39;qwen-turbo&#39;, prompt="将自然语言转为SQL:找出2022年客户满意度低于80%的订单", db_schema="orders(id,customer_id,score,year)" ) print(response.output.sql) # 输出:SELECT * FROM orders WHERE year=2022 AND score < 0.8 ``` #### 三、关键优化技术 1. **数据预处理** - 标准化时间表达式(如“上周”→“BETWEEN &#39;2024-05-20&#39; AND &#39;2024-05-26&#39;”) - 实体识别:自动映射“销售额”→“revenue”等字段[^3] 2. **模型微调** ```python # 基于BERT的微调示例(引用[3]) from nl2sql_baseline import BertForNL2SQL model = BertForNL2SQL.from_pretrained(&#39;bert-base-uncased&#39;) model.finetune(train_dataset, epochs=3) ``` 3. **安全防护** ```python # SQL注入防护(引用[1]) from sqlparse import parse def validate_sql(sql): parsed = parse(sql)[0] if any(token.value.upper() in (&#39;DROP&#39;,&#39;DELETE&#39;) for token in parsed.tokens): raise SecurityError("危险操作被拦截") ``` #### 四、应用场景示例 1. **智能客服系统** ```python # 自动响应客户查询 def handle_customer_query(question): sql = model.generate_sql(question) result = db.execute(sql) return format_as_natural_language(result) ``` 2. **数据分析平台** ```sql -- 用户输入"对比2023年Q1和Q2的利润率" -- 生成SQL: SELECT quarter, (profit/revenue) AS margin FROM financial_report WHERE year=2023 AND quarter IN (&#39;Q1&#39;,&#39;Q2&#39;) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汀、人工智能

十分感谢您的支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值