线性代数中解方程组的加减消元和求特征向量的加减消元的区别

解线性方程组和求特征向量时都会用到加减消元法,但求特征向量时可采用技巧简化步骤。例如,求3阶矩阵特征向量时,可将一个方程设为3个零,仅用两个方程消元。解方程组则需严格按照步骤进行。此外,特征向量的系数k不能为0,而方程组解的k可为任意常数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习线性代数的过程中我们会注意到解方程组的中有对系数矩阵进行加减消元化成行最简这个过程,而在学到特征向量这部分后,我们发现求特征向量也会有这一步。那么这两者有何区别呢?两者大体相同,不过在运算的技巧上有一些细微的差别:

  • 解方程组的加减消元必须老老实实的,一步一步认真的加减消元。
  • 求特征向量时的加减消元就有技巧了: 3 阶矩阵求特征向量时 3 个方程不要按部就班的加减消元,要学会偷懒,把一个方程直接写成三个零,用其中两个方程消元就够了。

下面我来分别举一个例子详加叙述。

解方程组

求如下方程组的基础解系和通解。

{ 5x1+7x2+2x3=03x1+5x2+6x3−4x4=04x1+5x2−2x3+3x4=0 \begin{cases} 5x_1 + 7x_2 + 2x_3 = 0 \\ 3x_1 + 5x_2 + 6x_3 - 4x_4 = 0 \\ 4x_1 + 5x_2 - 2x_3 + 3x_4 = 0 \\ \end{cases} 5x1+7x2+2x3=03x1+5x2+6x34x4=04x1+5x22x3+3x4=0

分析:要解方程组就要对方程组做同解变形,要做同解变形就要对系数矩阵做初等行变换。

解:

将系数矩阵用高斯消元法化成行最简矩阵

A=[5720356−445−23]→underover[123−3016−50000]→underover[10−87016−50000]=记B A = \begin{bmatrix} 5 & 7 & 2 & 0 \\ 3 & 5 & 6 & -4 \\ 4 & 5 & -2 & 3 \end{bmatrix} \xrightarrow[under]{over} \begin{bmatrix} 1 & 2 & 3 & -3 \\ 0 & 1 & 6 & -5 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow[under]{over} \begin{bmatrix} 1 & 0 & -8 & 7 \\ 0 & 1 & 6 & -5 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xlongequal[]{记} B A=534755262043over under100210360

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值