leetcode-329. 矩阵中的最长递增路径

本文探讨了在一个整数矩阵中寻找最长递增路径的问题,通过深度优先搜索和记忆化递归优化,提供了两种解决方案。文章详细解释了如何避免重复计算以提高效率,并附有示例代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

给定一个整数矩阵,找出最长递增路径的长度。

对于每个单元格,你可以往上,下,左,右四个方向移动。 你不能在对角线方向上移动或移动到边界外(即不允许环绕)。

示例 1:

输入: nums = 
[
  [9,9,4],
  [6,6,8],
  [2,1,1]
] 
输出: 4 
解释: 最长递增路径为 [1, 2, 6, 9]。

示例 2:

输入: nums = 
[
  [3,4,5],
  [3,2,6],
  [2,2,1]
] 
输出: 4 
解释: 最长递增路径是 [3, 4, 5, 6]。注意不允许在对角线方向上移动。

解题思路

Backtrace, when visiting a position, put it in the set, after visiting, remove it from set. Could use a memo to accelerate.

Time complexity: o(mn)o(mn)o(mn)
Space complexity: o(mn)o(mn)o(mn)

代码

class Solution:
    def longestIncreasingPath(self, matrix: List[List[int]]) -> int:
        m, n = len(matrix), len(matrix[0])
        memo = {}
        def dfs(x: int, y: int) -> int:
            if (x, y) in memo:
                return memo[(x, y)]
            res = 1
            for dz in (-1, 1):
                if 0 <= x + dz < m and matrix[x + dz][y] > matrix[x][y]:
                    visited.add((x + dz, y))
                    res = max(res, 1 + dfs(x + dz, y))
                    visited.remove((x + dz, y))
                if 0 <= y + dz < n and matrix[x][y + dz] > matrix[x][y]:
                    visited.add((x, y + dz))
                    res = max(res, 1 + dfs(x, y + dz))
                    visited.remove((x, y + dz))
            memo[(x, y)] = res
            return res
        visited = set()
        res = 0
        for i in range(m):
            for j in range(n):
                visited.add((i, j))
                res = max(res, dfs(i, j))
                visited.remove((i, j))
        return res
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值