题目
给定一个整数矩阵,找出最长递增路径的长度。
对于每个单元格,你可以往上,下,左,右四个方向移动。 你不能在对角线方向上移动或移动到边界外(即不允许环绕)。
示例 1:
输入: nums =
[
[9,9,4],
[6,6,8],
[2,1,1]
]
输出: 4
解释: 最长递增路径为 [1, 2, 6, 9]。
示例 2:
输入: nums =
[
[3,4,5],
[3,2,6],
[2,2,1]
]
输出: 4
解释: 最长递增路径是 [3, 4, 5, 6]。注意不允许在对角线方向上移动。
解题思路
Backtrace, when visiting a position, put it in the set, after visiting, remove it from set. Could use a memo to accelerate.
Time complexity: o(mn)o(mn)o(mn)
Space complexity: o(mn)o(mn)o(mn)
代码
class Solution:
def longestIncreasingPath(self, matrix: List[List[int]]) -> int:
m, n = len(matrix), len(matrix[0])
memo = {}
def dfs(x: int, y: int) -> int:
if (x, y) in memo:
return memo[(x, y)]
res = 1
for dz in (-1, 1):
if 0 <= x + dz < m and matrix[x + dz][y] > matrix[x][y]:
visited.add((x + dz, y))
res = max(res, 1 + dfs(x + dz, y))
visited.remove((x + dz, y))
if 0 <= y + dz < n and matrix[x][y + dz] > matrix[x][y]:
visited.add((x, y + dz))
res = max(res, 1 + dfs(x, y + dz))
visited.remove((x, y + dz))
memo[(x, y)] = res
return res
visited = set()
res = 0
for i in range(m):
for j in range(n):
visited.add((i, j))
res = max(res, dfs(i, j))
visited.remove((i, j))
return res