leetcode - 2425. Bitwise XOR of All Pairings

Description

You are given two 0-indexed arrays, nums1 and nums2, consisting of non-negative integers. There exists another array, nums3, which contains the bitwise XOR of all pairings of integers between nums1 and nums2 (every integer in nums1 is paired with every integer in nums2 exactly once).

Return the bitwise XOR of all integers in nums3.

Example 1:

Input: nums1 = [2,1,3], nums2 = [10,2,5,0]
Output: 13
Explanation:
A possible nums3 array is [8,0,7,2,11,3,4,1,9,1,6,3].
The bitwise XOR of all these numbers is 13, so we return 13.

Example 2:

Input: nums1 = [1,2], nums2 = [3,4]
Output: 0
Explanation:
All possible pairs of bitwise XORs are nums1[0] ^ nums2[0], nums1[0] ^ nums2[1], nums1[1] ^ nums2[0],
and nums1[1] ^ nums2[1].
Thus, one possible nums3 array is [2,5,1,6].
2 ^ 5 ^ 1 ^ 6 = 0, so we return 0.

Constraints:

1 <= nums1.length, nums2.length <= 10^5
0 <= nums1[i], nums2[j] <= 10^9

Solution

Assume nums1 = [x, y], nums2 = [a,b,c], then nums3 = [x^a, x^b, x^c, y^a, y^b, y^c], so the result would be: x^a^x^b^x^c^y^a^y^b^y^c = (x^x^x)^(y^y^y)^(a^a)^(b^b)^(c^c), so if the length of nums1 is odd, then we xor all the elements in nums2, otherwise we get 0 from nums2’s xor.

Time complexity: o(n)o(n)o(n)
Space complexity: o(1)o(1)o(1)

Code

class Solution:
    def xorAllNums(self, nums1: List[int], nums2: List[int]) -> int:
        res = 0
        if len(nums1) & 1 == 1:
            for each_num in nums2:
                res ^= each_num
        if len(nums2) & 1 == 1:
            for each_num in nums1:
                res ^= each_num
        return res
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值