
目标检测
目标检测的基础知识
HDD615
努力搬砖的技术人
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
MMdetection安装教程(Ubuntu)
1、下载工程 自行去 Github 下载代码 在下载好代码之后,打开里面的安装文档,查看一下要安装的 Python 最低版本和 Pytorch最低版本 Python 3.6+ PyTorch 1.3+ CUDA 9.2+ (如果基于 PyTorch 源码安装,也能够支持 CUDA 9.0) 2、新建虚拟环境 conda create -n mmdetection python=3.7 -y 新建成功后,进入虚拟环境里面 source activate mmdetection 3、安装Pytorch原创 2022-05-03 16:31:14 · 2748 阅读 · 0 评论 -
YOLOv5训练自己的数据集
1、克隆代码 YOLOv5 2、配置环境 Python>=3.6.0 PyTorch>=1.7 新建虚拟环境conda create -n yolov5 python=3.8 安装Pytorch,去 Pytorch 官网自己安装 然后进入代码文件夹pip install -r requirements.txt 3、将数据集转换至可训练格式 按照这里的代码 数据集转换,就可以将 VOC 格式的数据集转换成 YOLOv5 可以训练的格式 将生成的可训练的数据集复制到和 YOLOv5 工程原创 2022-01-25 19:59:04 · 6164 阅读 · 6 评论 -
图像数字化
图像数字化 计算机是如何保存图像的,主要包括以下步骤: 采样: 按一定的空间间隔自左到右、自上而下提取画面信息,将一幅连续的模拟图像在空间上转换成 若干个离散的像素点,每个像素点呈现不同的 颜色(彩色图像) 或 亮度(灰度图像)。 采样的 实质 就是要用多少个点来描述一幅图像。 将一副图像按照行列分割成许许多多的点,每一个点就是一个像素 像素:构成位图图像的最小单位,每个像素仅有一种颜色 **分辨率:**水平方向的像素个数 × 垂直方向的像素个数 量化: 将采样得到的每个像素点的颜色或亮度用若干个二原创 2021-12-27 10:53:57 · 4699 阅读 · 0 评论 -
Detectron2安装教程
创建虚拟环境 conda create -n detectron2 python=3.8 -y 激活环境 source activate detectron2 安装Pytorch1.8.0 根据CUDA版本选择对应的命令安装 # CUDA 11.1 pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable...原创 2021-12-21 14:41:32 · 5771 阅读 · 3 评论