自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

百锦再的博客

每天进步一点点,成全别人,成就自己。

  • 博客(1012)
  • 资源 (18)
  • 收藏
  • 关注

原创 SqlSugar:国产.Net 环境下的 SQL 封装神器

在.Net 开发领域,ORM(Object-Relational Mapping,对象关系映射)框架是连接代码与数据库的核心桥梁。长期以来,国外 ORM 框架(如 Entity Framework、Dapper)占据主流,但随着国产开源生态的崛起,SqlSugar。

2025-08-27 00:01:26 128

原创 四、Python 脚本常用模块(续)

另一方面,针对 MySQL、PostgreSQL 等主流关系型数据库,以及 MongoDB 等非关系型数据库,都有成熟的第三方库(如pymysql、psycopg2、pymongo),能满足不同场景下的需求。sqlite3是 Python 标准库内置模块,无需额外安装,可直接操作 SQLite 数据库。无论是日常办公中的数据统计(如员工信息管理)、运维场景下的日志存储(如服务器运行状态记录),还是数据分析中的数据预处理(如用户行为数据清洗),都需要通过数据库实现高效的数据管理。

2025-08-26 22:41:25 174

原创 一文读懂 Python 写脚本应具备的知识

本文系统介绍了Python脚本开发的基础知识,包括Python脚本的概念、开发环境配置、基础语法和常用模块。Python脚本是解释执行的文本文件,扩展名为.py,具有开发速度快、跨平台性强等优势。文章详细讲解了开发环境搭建步骤,涵盖Python解释器安装和代码编辑器选择(如VSCode、PyCharm)。基础语法部分重点解析了变量、数据类型、运算符、流程控制、函数定义及模块导入等核心概念。最后介绍了os、sys、datetime、json等标准库模块和requests第三方库的常用功能,为Python脚本开

2025-08-26 22:27:31 367

原创 .NET + Vue 基于 WebSocket 的聊天室全面实现

.NET+Vue WebSocket聊天室实现 本文介绍了基于.NET后端和Vue前端的WebSocket聊天室实现方案。 核心功能: 实时消息通信 在线用户列表显示 用户连接状态监控 消息历史记录 技术实现: 后端采用ASP.NET Core WebSocket提供实时通信能力 前端使用Vue.js框架结合原生WebSocket API 界面设计采用响应式布局,包含消息区、用户列表和输入框 代码特点: 提供完整的HTML/CSS/JS实现 包含连接状态指示器 区分自身消息和其他用户消息的样式 支持消息发送

2025-08-26 00:59:42 178

原创 WebSocket vs RabbitMQ:聊天室技术选型分析

本文对比了WebSocket和RabbitMQ在聊天室应用中的技术特性。WebSocket作为双向通信协议,具有极低延迟(毫秒级)和简单直接的实现方式,适合实时双向通信场景;RabbitMQ作为消息代理,支持多种协议,具备良好的扩展性和内置集群能力,更适合应用解耦和消息分发。通过可视化界面展示了两种技术的代码实现差异,并指出WebSocket在实时性上更优,而RabbitMQ在系统扩展和解耦方面更具优势。(149字)

2025-08-26 00:52:19 620

原创 国产AI大模型的“五虎上将”:2025年中全方位深度对比报告

本文对国内五大主流大语言模型(百度文心、阿里通义、智谱ChatGLM、深度求索DeepSeek、月之暗面Kimi)进行了全面技术对比。测试显示,DeepSeek和通义千问在代码生成任务中表现最优,均能准确实现算法逻辑;ChatGLM虽功能正确但代码稍显冗余。模型架构上可分为GPT路线(通义、DeepSeek)和融合创新路线(文心、ChatGLM),Kimi则专注于超长文本处理。各模型在技术路径、训练数据和应用场景上各具特色,为开发者提供了多样化的AI能力选择。

2025-08-25 10:11:27 2225

原创 一文学会vue的动态权限控制

动态权限控制原理与实现 核心原理 动态权限控制通过用户登录后获取权限数据,前端据此生成可访问路由和菜单,实现权限管理闭环流程。主要步骤包括: 用户登录获取权限JSON数据 解析生成动态路由并添加到路由器 根据路由生成侧边栏菜单 路由守卫检查访问权限 组件内按钮级权限控制 关键实现 权限数据结构:后端返回树形权限数据,包含路由和按钮权限标识 路由分类:静态路由(如登录页)和动态路由(需权限控制) 状态管理:使用Pinia存储用户权限、动态路由和菜单数据 核心工具函数:递归处理权限数据,生成路由配置和菜单结构

2025-08-23 21:44:54 415

原创 《Cocos 游戏开发入门一本通》第六章

本章系统介绍了Cocos引擎的UI系统,重点讲解了UI组件、布局系统和多分辨率适配三大核心内容。在UI组件部分,详细解析了Button、Toggle、Slider、ProgressBar等基础组件的特性和使用方法;在布局系统方面,阐述了Widget和Layout组件的协同工作机制;针对多分辨率适配问题,深入分析了Canvas和FitScreen组件的适配策略与实现方法。通过理论讲解与典型应用案例的结合,为开发者提供了构建专业级游戏UI界面的完整技术方案。

2025-08-23 01:05:34 830

原创 《Cocos 游戏开发入门一本通》第五章

Cocos游戏开发中的资源管理是构建高效游戏的关键环节。本章系统介绍了资源类型、导入导出、动态加载及优化策略。主要内容包括: 资源类型解析:详细说明图片、音频、Prefab、动画等核心资源的特性与应用场景,如PNG透明通道、音频格式选择、Prefab复用等。 资源处理流程:阐述资源导入规范(目录结构、依赖管理)与导出方法,强调格式兼容性和命名规范的重要性。 动态加载技术:重点讲解cc.resources.load API的使用,包括单资源/批量加载、进度监控和错误处理机制。 优化与缓存:提供图片压缩、音频参

2025-08-23 00:34:33 717 67

原创 一个成熟的运维及售后岗位应掌握的知识体系详解

摘要 本文全面解析运维及售后岗位所需的技术栈与能力模型,涵盖基础、进阶、软技能及行业视野四大维度。 基础篇强调计算机系统原理(CPU、内存、I/O、网络协议栈)、Linux/Windows Server管理(性能调优、日志分析)、脚本编程(Bash/Python/Go)及硬件知识(服务器、数据中心)。 核心篇聚焦专业技术,包括: 可观测性:Prometheus监控、ELK日志体系、告警管理; 自动化:Ansible、Terraform实现基础设施即代码; CI/CD:Jenkins/GitLab CI流水线

2025-08-21 21:54:24 1010 42

原创 常德二院信创转型实战:全栈国产化提升医疗效率与安全

全栈国产化带来的安全优势也已经开始显现,张兴林主任介绍,在最近一次的漏扫检测当中,没有发现任何系统漏洞,“

2025-08-21 14:20:10 18343 84

原创 国产数据库又创新高:金仓数据库的新版KDMS V4

金仓数据库迁移评估系统(KDMS)V4正式上线,提供智能化的数据库迁移解决方案。系统通过三大升级:异构采集(支持数据库体检、静态扫描、动态追踪)、重构评估引擎(支持6大数据库)、全新可视化界面,解决迁移兼容性问题。用户只需在金仓社区完成下载采集器、按需采集数据、生成兼容报告三步操作,即可轻松评估迁移风险。加入社区还可获得技术资源、专家支持、成长赋能等五大权益,助力高效完成国产化数据库替代。

2025-08-19 20:36:27 16949 123

原创 一文精通 Swagger 在 .NET 中的全方位配置与应用

什么是 SwaggerSwagger 是一个开源的 API 设计和文档工具,它可以帮助开发人员更快、更简单地设计、构建、文档化和测试 RESTful API。Swagger 可以自动生成交互式 API 文档、客户端 SDK、服务器 stub 代码等,从而使开发人员更加容易地开发、测试和部署 API。

2025-08-19 17:17:56 738 95

原创 一文读懂 .NET 鉴权系统模块设计与代码实现

### **结语:构建健壮鉴权系统的关键原则**1. **最小权限原则:** 用户只拥有完成工作所需的最小权限2. **纵深防御:** 多层安全措施(网络/应用/数据层)3. **零信任架构:** 永不信任,始终验证4. **安全默认值:** 框架默认启用安全配置5. **持续审计:** 定期审查权限分配和访问日志

2025-08-19 17:03:55 922 123

原创 《Cocos游戏开发入门一本通》第四章

本文系统介绍了游戏引擎中的组件系统,包括其概念、常用组件和开发方法。组件系统采用"组合优于继承"的设计理念,通过功能模块化提升代码复用性和灵活性。文章详细解析了Sprite、Label、Button等常用内置组件的功能和使用场景,并阐述了自定义组件的开发流程与核心要素,强调单一职责、配置化、事件驱动等设计原则。最后通过"玩家控制器"和"道具拾取"两个实例,展示了组件开发的具体实现方法,为游戏开发者提供了全面的组件系统应用指南。

2025-08-17 08:58:20 702 128

原创 《Cocos游戏开发入门一本通》第二章

摘要: 本章详细介绍了Cocos引擎开发环境的搭建流程,涵盖安装前的准备工作(Node.js、Python、CocosDashboard的安装与配置)、CocosCreator的安装方式(通过Dashboard或手动安装)、首个项目的创建(模板选择、目录结构解析)以及开发界面的核心模块功能(资源管理器、场景编辑器、层级管理器等)。通过步骤化指导与常见问题解决方案,帮助开发者快速搭建稳定高效的开发环境,熟悉工具链操作,为后续游戏开发奠定基础。

2025-08-17 08:57:25 725 131

原创 《Cocos游戏开发入门一本通》第三章

这些节点操作是游戏开发中的基础,通过灵活运用这些操作,可以实现各种复杂的游戏逻辑和动画效果。在实际开发中,需要根据具体的游戏需求和引擎特性,选择合适的操作方式,确保游戏的性能和效果。

2025-08-16 09:53:00 1061 67

原创 《Cocos游戏开发入门一本通》第一章

Cocos引擎是一款功能强大的跨平台游戏开发引擎,包含Cocos2d-x和CocosCreator两大核心产品。Cocos2d-x作为开源跨平台框架,支持C++/Lua/JavaScript语言,适用于iOS/Android/桌面/HTML5等多平台;CocosCreator则是可视化3D内容创作平台,支持TypeScript开发。引擎具有开源免费、跨平台、高性能、易用性强等特点,配备丰富的插件与资源商店。适用于休闲益智、RPG、策略、动作冒险等多种游戏类型开发,全球拥有150万开发者,覆盖16亿终端用户。

2025-08-15 14:27:47 826 100

原创 .NET 的 WebApi 项目必要可配置项都有哪些?

本文详细介绍了.NET WebApi项目的关键配置项,包括数据库连接设置(SQL Server、MySQL等)、依赖注入服务注册、Swagger接口文档集成、JSON数据大小写处理、跨域访问控制、JWT身份验证与授权策略,以及使用Serilog进行日志管理。这些配置项涵盖了项目开发中的核心需求,从数据持久化到接口安全,从文档生成到日志记录,为构建高效、安全、易维护的WebApi服务提供了全面指导。合理运用这些配置可以显著提升项目的开发效率和运行稳定性。

2025-08-14 16:05:44 2012 132

原创 一篇文章读懂.Net的依赖注入

摘要 本文全面介绍了.NET中的依赖注入(DI)技术,分为基础概念和实现两大部分。在基础概念部分,文章阐述了DI的核心思想是通过外部实体提供对象依赖项,而非对象自行创建,从而降低耦合度。重点讲解了DI的三种实现方式:构造函数注入(推荐)、属性注入和方法注入,并比较了DI与控制反转、服务定位器等相关概念的异同。 在实现部分,详细介绍了.NET内置DI容器的功能与使用方法,包括服务注册的多种方式(接口映射、具体类、实例和工厂方法)以及三种生命周期管理(瞬时、作用域和单例)。文章强调正确理解服务生命周期对构建可靠

2025-08-14 16:02:17 1487 109

原创 ThingJS 物品移动和特效学习大全

在上述代码中,TWEEN.Tween创建了一个补间动画,to方法指定了目标位置和移动时间,easing方法选择了缓动函数,这里的Quadratic.InOut会使物体在开始和结束时移动速度较慢,中间速度较快,呈现出自然的缓动效果。只要时间进度t小于 1(即移动还未完成),就继续下一帧的计算和移动。在这段代码中,moveObject函数在每一帧被调用,它计算物体当前位置与目标路径点的方向和距离,根据设定的速度朝着目标点移动。然后,我们可以按照一定的时间间隔(例如每一帧),计算曲线上的点,并将物体移动到该点。

2025-08-13 16:07:24 574 89

原创 ThingJS 新手学习技巧

场景操作 API 用于对场景进行管理和控制,如创建场景、加载场景、设置场景属性等。THING.Scene():创建一个新的场景。scene.load(url):加载指定 URL 的场景资源。scene.setBackgroundColor(color):设置场景的背景颜色。scene.setSkyBox(skyBox):设置场景的天空盒。ThingJS 是一款功能强大、易于学习的 3D 可视化开发平台,通过本文的学习,新手开发者应该对 ThingJS 有了全面的了解。

2025-08-13 15:45:18 645 105

原创 EF (Entity Framework) vs LINQ to SQL vs SqlSugar 全方位对比分析

本文对比了三种.NET ORM框架:Entity Framework、LINQ to SQL和SqlSugar。EF作为微软官方ORM功能全面但较复杂,适合大型企业应用;LINQ to SQL轻量简单但仅支持SQL Server,适合小型项目;SqlSugar由中国开发者开发,性能优异且支持多数据库,特别适合国内开发场景。三者各具特色,开发者应根据项目规模、数据库需求及团队熟悉度进行选择,其中EF适合复杂业务系统,LINQ to SQL适合简单SQL Server项目,而SqlSugar在性能和易用性方面表

2025-08-12 01:01:44 849 132

原创 虚拟卡券管理平台详细设计文档

摘要: 本文档详细设计了一个高并发、高可用的虚拟卡券全生命周期管理平台,支持亿级用户和千万级日交易量。系统采用微服务架构,基于Java 17(Spring Boot 3.2)开发,使用MySQL分库分表、Redis缓存、Kafka消息队列等技术栈。核心功能包括卡券发行、领取、核销、结算及风控管理,涵盖折扣券、满减券、礼品卡等多种类型。通过分布式锁保障高并发核销,并设计了多级分账结算机制。系统还包含营销活动引擎配置模板和实时风控拦截策略,如防刷券、反套现等。数据库采用分片键优化,接口规范遵循RESTful标准

2025-08-11 21:24:59 1397 116

原创 抖音店铺自研入驻全面指南:利弊深度分析与详细流程解析

抖音店铺自研模式:机遇与挑战并存 抖音店铺自研模式赋予商家完整的运营自主权,涵盖商品上架、内容创作、订单履约及售后全流程。相比全托管和半托管模式,自研模式利润空间更大(节省15%-30%佣金),且支持深度品牌建设与用户数据积累。商家可灵活调整定价、供应链及营销策略,并通过多渠道流量(短视频、直播、商城搜索)降低依赖风险。 然而,该模式对资金、资源及综合能力要求较高,需投入3-10万元启动资金,并具备商品管理、内容创作、直播运营等多元能力。同时,商家需应对平台规则变化、市场波动及供应链风险,违规可能导致扣分或

2025-08-02 12:32:32 1385 206

原创 .NET 实现爬虫最优方案:从基础到高级的全面指南

.NET爬虫开发核心技术解析 本文系统介绍了基于.NET平台的网络爬虫开发全套解决方案。主要内容包括: 基础架构设计:详细剖析爬虫核心组件和工作流程,提供HttpClient最佳实践方案,包含连接池管理、代理轮换等优化技巧 HTML解析技术:对比AngleSharp和HtmlAgilityPack两大解析库,展示CSS选择器和XPath的实战应用 反反爬策略:涵盖User-Agent轮换、IP代理池、请求频率控制等关键技术,提供请求延迟算法实现 性能优化:介绍并发控制、任务调度、内存管理等优化手段,实现高效

2025-08-01 13:50:23 1727 150

原创 编程类图书创作与出版指南

编程类图书创作与出版指南,涵盖技术规范、出版流程、法律合规及运营策略。

2025-08-01 13:45:16 736 111

原创 全方位Python学习方法论:从入门到精通的系统指南

记住,学习编程不是短跑而是马拉松。建议制定6-12个月的学习计划,每周保持10-15小时的编码时间,定期回顾和调整学习策略。Python作为一门既适合入门又足够强大的语言,只要采用正确的方法并坚持实践,任何人都能掌握其精髓并应用于实际工作中。

2025-07-29 19:43:08 897 109

原创 国产数据库,适合的才是最好的!

从技术原理、场景适配、实战落地等多个维度,为大家呈现融合数据库在制造业的独特价值。活动现场,您还将有机会与同行精英面对面交流,探讨制造业数据管理的痛点与解决方案,拓展行业人脉,为企业的数字化转型汲取新思路。然而,海量数据的无序流转、设备故障的突发而至,往往让制造企业陷入 “数据听不懂、故障预见难” 的困境。为助力制造企业借助融合数据库实现数据价值的深度挖掘与设备故障的精准预判,我们诚挚邀请行业同仁共赴KING大咖面对面沙龙,深入探讨融合数据库在制造业的实践之道。:长春富力万达文华酒店 净月潭厅(3F)

2025-07-27 16:33:58 36786 96

原创 对接京东、抖音等大厂接口的全方位技术素养指南

本文深入探讨了企业级接口对接的核心技术要点,重点分析了京东、抖音等大型平台的API实现规范。主要内容包括:1)HTTP协议与RESTful规范的深度应用,强调请求方法语义和状态码处理;2)JSON数据格式的精细处理方案,涉及空值、日期和大数字等特殊场景;3)多层次安全认证体系,涵盖OAuth 2.0和签名机制实现;4)端到端加密方案,包含TLS传输加密和敏感字段加密;5)数字签名生成算法对比及访问控制策略。文章通过具体代码示例,展示了签名生成、令牌刷新、字段加密等关键技术实现,为企业构建安全可靠的接口对接体

2025-07-26 21:11:39 911 86

原创 树形数据展示:树形表格与树形控件的深度对比(Vue实现)

本文探讨了树形数据结构的两种可视化实现方式:树形表格和树形控件。树形表格通过递归组件实现多列数据展示,支持节点展开/折叠和点击查看详情功能,适用于需要展示多属性层级数据的场景。代码示例展示了Vue实现的树形表格组件,包含表头、缩进层级、节点详情等功能。树形表格适合文件系统、组织架构等需要同时查看层级关系和详细属性的场景,而树形控件则更专注于展示纯层级结构。两种方式各有优劣,开发者应根据具体需求选择合适的数据展示方案。

2025-07-26 20:52:30 988 62

原创 和《首席信息官》一起看国产数据库

AI时代数据库一体机市场竞争激烈,电科金仓推出新一代"云数据库-AI版",以赤兔引擎、的卢模型和绝影盾甲三大核心优势实现性能、智能和安全突破。该产品支持百万级并发、AI智能运维和全链路安全防护,已在医疗、教育、央国企等多个领域成功应用。此次发布标志着电科金仓从传统数据库厂商向智能数据基础设施提供商的战略转型,展现了国产数据库在AI时代的技术实力和市场竞争力。

2025-07-25 11:39:51 28916 85

原创 WPF依赖属性深度解析:从原理到高级应用

摘要: 依赖属性是WPF的核心特性,与CLR属性不同,它由WPF属性系统统一管理,支持值继承、自动变更通知和多来源值设置。创建自定义依赖属性需定义静态DependencyProperty字段,并通过Register方法注册,同时提供CLR属性包装器。依赖属性还支持三种回调机制:PropertyChangedCallback处理值变更,ValidateValueCallback验证值有效性,CoerceValueCallback强制修正值范围。这些机制共同增强了WPF控件的灵活性和功能性。

2025-07-25 03:00:48 1176 18

原创 林修远说:Java让我变得更优雅

《转型之路:从C#培训班到Java架构师的抉择》 林修远站在人生十字路口:一边是年薪高出40%的C#高薪机会,一边是深耕三年的Java技术路线。三年前,这个只会写"Hello World"的培训班学员,在生存压力下被迫从C#转向Java,经历了痛苦的转型期——环境配置的挫败、思维方式的碰撞、导师张明的严苛要求。通过持续学习《Java编程思想》和项目实践,他逐渐领悟到Java"选择与组合"的哲学魅力,最终成长为能独立负责后端架构的高级开发。面对高薪诱惑,林修远最终选择了

2025-07-24 23:08:08 1174 45

原创 陈昊说:C#让我变得更优雅

本文讲述了销售员陈昊转行IT的心路历程。在Java培训中受挫后,他偶然接触C#并被其简洁优雅的特性吸引。尽管面临Java岗位更多、收入更高的现实,他仍坚持对C#的热爱。职场中,他用C#的创新方案获得认可,但也遭受同事质疑。项目结束后,他拒绝转Java而选择离职,经历多次求职挫折,最终因对技术的独特见解被微软系公司录用为C#架构师。故事展现了技术人在现实与理想间的抉择,以及坚持技术信仰的价值。

2025-07-24 22:43:39 1367 35

原创 前言讯息:新时代下国产数据库的大浪淘沙之旅

金仓数据库提出"融合+AI"战略应对AI时代挑战 中国电科旗下金仓数据库在7月15日发布会上提出,未来数据库应以"融合"为体、"AI"为用的发展理念。电科金仓高级副总裁冷建全指出,在行业追逐AI热点时,金仓选择以"五个一体化"融合能力筑基,让AI成为加速器。 金仓的"五个一体化"包括:多语法体系兼容、多集群架构、多模数据存储、多应用场景处理和开发运维一体化管理。这些能力可显著降低国产化替代的总拥有成本。 在A

2025-07-23 20:55:04 36706 37

原创 WPF UI 框架全面指南:从入门到实战

摘要: WPF(Windows Presentation Foundation)是微软推出的桌面应用UI框架,开发者常借助第三方UI框架提升开发效率和视觉效果。本文介绍了三款主流WPF框架: MaterialDesignInXamlToolkit:基于Google Material Design,提供丰富组件、主题切换和动画效果,适合现代化设计需求。 HandyControl:包含80+自定义控件,支持主题切换和实用工具,适合功能丰富的应用开发。 MahApps.Metro:采用扁平化Metro风格,优化窗

2025-07-23 16:52:56 1520 28

原创 Vue + Element Plus 组件递归调用详解

Vue递归组件与Element Plus应用指南 本文详细介绍了Vue 3与Element Plus中递归组件的实现与应用。主要内容包括: 递归组件基础:解释了递归组件的概念、适用场景(树形结构、嵌套菜单等)和实现必要条件(name选项、终止条件) 基础实现:展示了最简单的递归组件示例,通过组件自引用和props传递数据,每个实例维护自身状态 Element Plus集成: 使用el-tree内置递归功能实现树形结构 通过插槽自定义树节点内容 利用el-menu实现多级嵌套菜单 进阶技巧:包括自定义节点操作

2025-07-23 14:29:36 732 38

原创 职场老人历险记:不安全科技有限公司的坑

《不安全的开始》讲述了一位年轻工程师齐磊入职"不安全的科技有限公司"后的职场遭遇。文章通过六个章节展现了其在技术主管徐部董高压管理下的痛苦经历:从发现技术问题被忽视(危险的Modbus),到现场问题被归咎(GNSS的闹剧),再到专业能力被贬低(复制的耻辱)。最终,齐磊在部门会议上揭露主管的技术短板后主动辞职。故事生动刻画了职场新人在不合理管理下的挣扎与觉醒,以及最终选择捍卫专业尊严的成长历程。文中"保护自己比完成任务更重要"等细节深刻揭示了某些企业的管理弊端。

2025-07-23 10:07:36 1573 35

原创 Vue 动态组件递归渲染实现无限深度树结构

本文介绍了在Vue中实现无限深度树结构的解决方案,主要包含以下内容: 数据结构设计:定义了包含节点信息、问题和子节点的树形结构格式 递归组件实现:创建了TreeItem组件,通过动态组件渲染不同类型的题目(单选/多选) 问题组件开发:分别实现了Danxuan和Duoxuan组件处理单选和多选题 优化方案: 使用provide/inject进行状态管理 动态组件懒加载 通过虚拟滚动、记忆化、数据冻结等技术提升性能 该方案能有效处理无限深度的树形结构,支持多种题型混合展示,并提供了性能优化建议。

2025-07-23 09:34:43 618 16

用传统cv算法和卷积神经网络实现手势识别.zip

【国外优秀项目】 神经网络在计算机视觉(Computer Vision, CV)领域扮演着至关重要的角色。计算机视觉旨在使计算机能够“看”和理解图像或视频中的内容,而神经网络,尤其是深度学习模型,已经成为实现这一目标的关键技术。以下是神经网络在计算机视觉中的一些主要应用: 1. **图像分类**: 神经网络可以将图像分类到不同的类别中。例如,一个深度卷积神经网络(CNN)可以识别图像中的对象是猫、狗还是其他动物。 2. **目标检测**: 神经网络可以识别图像中的多个对象,并确定它们的位置和类别。例如,使用R-CNN、Fast R-CNN、Faster R-CNN、YOLO(You Only Look Once)或SSD(Single Shot MultiBox Detector)等算法。 3. **图像分割**: 神经网络可以将图像分割成多个区域,每个区域对应于图像中的一个对象或背景。这包括语义分割(为图像中的每个像素分配类别标签)和实例分割(区分同一类别的不同实例)。 4. **人脸识别**: 神经网络可以识别和验证人脸。这在安全访问控制、社交媒体标签建议等场景中非常有用。 5. **姿态估计**: 神经网络可以估计图像或视频中人物的关节位置,从而推断出他们的身体姿态。 6. **图像生成和增强**: 神经网络可以生成新的图像,或者增强现有图像的质量。例如,使用生成对抗网络(GAN)生成逼真的图像,或者使用超分辨率技术提高图像的分辨率。

2024-06-05

专注优化算法开发,包括以下方面: (1)启发式算法,元启发式算法,群智能优化算法(2)凸优化 (3)多目标优化.zip

【国外优秀项目】 神经网络(Neural Networks)、卷积神经网络(Convolutional Neural Networks, CNNs)和遗传算法(Genetic Algorithms, GAs)是人工智能领域的三种不同技术,它们各自有不同的应用和特点。 1. **神经网络(Neural Networks)**: 神经网络是一种受人脑启发的计算模型,它由大量的节点(或称为“神经元”)组成,这些节点通常分层排列。神经网络通过学习从输入到输出的映射关系来解决各种问题,如分类、回归和模式识别。神经网络的学习过程通常涉及调整节点之间的连接权重,以最小化预测输出与实际输出之间的差异。 2. **卷积神经网络(Convolutional Neural Networks, CNNs)**: CNNs是一种特殊类型的神经网络,专门用于处理具有已知网格状拓扑的数据,如图像。CNNs的核心是卷积层,它通过在输入数据上滑动小的滤波器(或称为“卷积核”)来提取特征。这些特征随后被传递到网络的后续层进行进一步的处理。CNNs在图像识别、视频分析、医学图像处理等领域表现出色。 3. **遗传算法(Genetic Algorithms, GAs)**: GAs是一种模拟自然选择和遗传机制的搜索算法。它们通常用于优化和搜索问题。遗传算法通过模拟生物进化过程中的选择、交叉(杂交)和变异等操作来演化出问题的解决方案。GAs从一个可能解的种群开始,通过迭代过程不断改进解的质量,直到找到满意的解决方案或达到预定的停止条件。 这三种技术可以独立使用,也可以结合使用。例如,神经网络和CNNs通常用于模式识别和预测问题,而遗传算法可以用于优化神经网络的结构或参数。在某些情况下,遗传算法甚至可以用来训练神经网络

2024-06-05

用Paddle框架实现了胶囊网络模型.zip

【国外优秀项目】 神经网络在计算机视觉(Computer Vision, CV)领域扮演着至关重要的角色。计算机视觉旨在使计算机能够“看”和理解图像或视频中的内容,而神经网络,尤其是深度学习模型,已经成为实现这一目标的关键技术。以下是神经网络在计算机视觉中的一些主要应用: 1. **图像分类**: 神经网络可以将图像分类到不同的类别中。例如,一个深度卷积神经网络(CNN)可以识别图像中的对象是猫、狗还是其他动物。 2. **目标检测**: 神经网络可以识别图像中的多个对象,并确定它们的位置和类别。例如,使用R-CNN、Fast R-CNN、Faster R-CNN、YOLO(You Only Look Once)或SSD(Single Shot MultiBox Detector)等算法。 3. **图像分割**: 神经网络可以将图像分割成多个区域,每个区域对应于图像中的一个对象或背景。这包括语义分割(为图像中的每个像素分配类别标签)和实例分割(区分同一类别的不同实例)。 4. **人脸识别**: 神经网络可以识别和验证人脸。这在安全访问控制、社交媒体标签建议等场景中非常有用。 5. **姿态估计**: 神经网络可以估计图像或视频中人物的关节位置,从而推断出他们的身体姿态。 6. **图像生成和增强**: 神经网络可以生成新的图像,或者增强现有图像的质量。例如,使用生成对抗网络(GAN)生成逼真的图像,或者使用超分辨率技术提高图像的分辨率。

2024-06-05

以树莓派的Raspbian系统为基础平台,使用Qt Creator进行界面开发.zip

在树莓派上使用Raspbian系统进行Qt Creator界面开发是一个相对直接的过程。以下是基本步骤: 1. **安装Raspbian**: 确保你的树莓派已经安装了Raspbian操作系统。你可以从树莓派官方网站下载最新版本的Raspbian,并使用NOOBS或通过SD卡烧录器安装到SD卡上。 2. **更新系统**: 在开始之前,确保你的系统是最新的。打开终端并运行以下命令: ```bash sudo apt-get update sudo apt-get upgrade ``` 3. **安装Qt Creator**: Raspbian默认仓库中包含了Qt Creator,你可以通过以下命令安装: ```bash sudo apt-get install qtcreator ``` 这将会安装Qt Creator以及一些必要的工具和库。 4. **配置Qt Creator**: 打开Qt Creator,你可能需要配置一些设置,比如构建套件(Kit)。在“工具”->“选项”->“构建和运行”

2024-06-05

学习神经网络算法.zip

【国外优秀项目】 神经网络,尤其是深度学习模型,已经在多个行业中找到了广泛的应用。以下是一些主要的行业应用示例: 1. **金融服务业**: - 信用评分:使用神经网络来评估贷款申请人的信用风险。 - 欺诈检测:通过分析交易模式来识别信用卡欺诈或洗钱行为。 - 算法交易:利用神经网络预测股票市场走势,进行自动化交易。 2. **医疗保健**: - 疾病诊断:使用深度学习分析医学影像(如X光、CT、MRI)来辅助诊断癌症等疾病。 - 药物发现:通过神经网络预测分子与蛋白质的相互作用,加速新药的研发。 - 个性化治疗:根据患者的遗传信息和临床数据推荐最佳治疗方案。 3. **零售和电子商务**: - 推荐系统:使用神经网络为用户推荐商品。 - 需求预测:预测产品需求,优化库存管理。 - 客户细分:通过分析客户行为数据来进行市场细分和目标营销。 4. **制造业**: - 预测性维护:通过分析机器传感器数据来预测设备故障,减少停机时间。 - 质量控制:使用图像识别技术自动检测产品缺陷。 - 供应链优化:通过神经网络模型优化生产计划和物流。 5. **交通运输**: - 自动驾驶汽车:使用深度学习处理来自车辆传感器的数据,实现环境感知和决策。 - 交通流量管理:通过分析交通数据来优化信号灯控制,减少拥堵。 - 航空业:预测航班延误,优化航线和机组调度。 6. **电信**: - 网络优化:使用神经网络来预测网络流量模式,优化资源分配。 - 客户流失预测:分析客户行为来预测并减少客户流失。 7. **能源**: - 能源消耗预测:预测电力需求,优化发电和分配。 - 风力和太阳能发电预测:通过神经网络模型预测可再生能源的产量。 8. **安全领域**: - 视频监控:使用深度学习进行人脸识别、异常行为检测。 - 网络安全:通过神经网络检测和防御网络

2024-06-05

一个中国象棋程序和一个配套的基于蒙特卡洛算法及神经网络的人工智能(模仿阿尔法狗).zip

【国外优秀项目】 神经网络,尤其是深度学习模型,已经在多个行业中找到了广泛的应用。以下是一些主要的行业应用示例: 1. **金融服务业**: - 信用评分:使用神经网络来评估贷款申请人的信用风险。 - 欺诈检测:通过分析交易模式来识别信用卡欺诈或洗钱行为。 - 算法交易:利用神经网络预测股票市场走势,进行自动化交易。 2. **医疗保健**: - 疾病诊断:使用深度学习分析医学影像(如X光、CT、MRI)来辅助诊断癌症等疾病。 - 药物发现:通过神经网络预测分子与蛋白质的相互作用,加速新药的研发。 - 个性化治疗:根据患者的遗传信息和临床数据推荐最佳治疗方案。 3. **零售和电子商务**: - 推荐系统:使用神经网络为用户推荐商品。 - 需求预测:预测产品需求,优化库存管理。 - 客户细分:通过分析客户行为数据来进行市场细分和目标营销。 4. **制造业**: - 预测性维护:通过分析机器传感器数据来预测设备故障,减少停机时间。 - 质量控制:使用图像识别技术自动检测产品缺陷。 - 供应链优化:通过神经网络模型优化生产计划和物流。 5. **交通运输**: - 自动驾驶汽车:使用深度学习处理来自车辆传感器的数据,实现环境感知和决策。 - 交通流量管理:通过分析交通数据来优化信号灯控制,减少拥堵。 - 航空业:预测航班延误,优化航线和机组调度。 6. **电信**: - 网络优化:使用神经网络来预测网络流量模式,优化资源分配。 - 客户流失预测:分析客户行为来预测并减少客户流失。 7. **能源**: - 能源消耗预测:预测电力需求,优化发电和分配。 - 风力和太阳能发电预测:通过神经网络模型预测可再生能源的产量。 8. **安全领域**: - 视频监控:使用深度学习进行人脸识别、异常行为检测。 - 网络安全:通过神经网络检测和防御网络

2024-06-05

图神经网络相关算法详述及实现.zip

【国外优秀项目】 图神经网络(Graph Neural Networks, GNNs)是一种专门用于处理图结构数据的深度学习模型。图结构数据在现实世界中非常常见,例如社交网络、蛋白质相互作用网络、交通网络等。GNNs在多个行业中都有应用,以下是一些主要的应用领域: 1. **社交网络分析**: - 推荐系统:通过分析用户之间的关系和兴趣来推荐朋友或内容。 - 社区检测:识别社交网络中的社区结构,了解用户群体。 2. **生物信息学**: - 蛋白质结构预测:通过分析蛋白质之间的相互作用来预测其三维结构。 - 药物发现:通过分析药物分子和蛋白质之间的相互作用来发现新药。 3. **交通网络**: - 交通流量预测:通过分析交通网络中的节点和边来预测交通流量。 - 路线规划:优化城市交通路线,减少拥堵。 4. **电网管理**: - 电网优化:通过分析电网中的节点和边来优化电力分配。 - 故障检测:通过分析电网中的异常模式来检测潜在的故障。 5. **金融风控**: - 欺诈检测:通过分析交易网络中的模式来识别欺诈行为。 - 信用评分:通过分析用户在金融网络中的行为来评估信用风险。 6. **知识图谱**: - 问答系统:通过分析知识图谱中的实体和关系来提供准确的答案。 - 语义搜索:通过分析知识图谱中的结构来提供更精确的搜索结果。 7. **推荐系统**: - 协同过滤:通过分析用户和物品之间的图结构来提供个性化推荐。 - 内容推荐:通过分析内容之间的关系来推荐相关内容。 8. **网络安全**: - 入侵检测:通过分析网络流量图中的异常模式来检测潜在的网络攻击。 - 恶意软件分析:通过分析恶意软件的传播网络来识别和防御恶意软件。 图神经网络的应用正在不断扩展,随着技术的进步,它们在更多领域中的应用将会被发掘和实现。由于图结构数据的普遍性,GNNs在处理复杂关系和模式识别方面具有独特的优势,因此在未来的行业应用中具有巨大的潜力。

2024-06-05

学习的一些基本神经网络算法.zip

【国外优秀项目】 神经网络,尤其是深度学习模型,已经在多个行业中找到了广泛的应用。以下是一些主要的行业应用示例: 1. **金融服务业**: - 信用评分:使用神经网络来评估贷款申请人的信用风险。 - 欺诈检测:通过分析交易模式来识别信用卡欺诈或洗钱行为。 - 算法交易:利用神经网络预测股票市场走势,进行自动化交易。 2. **医疗保健**: - 疾病诊断:使用深度学习分析医学影像(如X光、CT、MRI)来辅助诊断癌症等疾病。 - 药物发现:通过神经网络预测分子与蛋白质的相互作用,加速新药的研发。 - 个性化治疗:根据患者的遗传信息和临床数据推荐最佳治疗方案。 3. **零售和电子商务**: - 推荐系统:使用神经网络为用户推荐商品。 - 需求预测:预测产品需求,优化库存管理。 - 客户细分:通过分析客户行为数据来进行市场细分和目标营销。 4. **制造业**: - 预测性维护:通过分析机器传感器数据来预测设备故障,减少停机时间。 - 质量控制:使用图像识别技术自动检测产品缺陷。 - 供应链优化:通过神经网络模型优化生产计划和物流。 5. **交通运输**: - 自动驾驶汽车:使用深度学习处理来自车辆传感器的数据,实现环境感知和决策。 - 交通流量管理:通过分析交通数据来优化信号灯控制,减少拥堵。 - 航空业:预测航班延误,优化航线和机组调度。 6. **电信**: - 网络优化:使用神经网络来预测网络流量模式,优化资源分配。 - 客户流失预测:分析客户行为来预测并减少客户流失。 7. **能源**: - 能源消耗预测:预测电力需求,优化发电和分配。 - 风力和太阳能发电预测:通过神经网络模型预测可再生能源的产量。 8. **安全领域**: - 视频监控:使用深度学习进行人脸识别、异常行为检测。 - 网络安全:通过神经网络检测和防御网络

2024-06-05

实现了深度学习中的一些算法,包括:四种初始化方法.zip

【国外优秀项目】 图神经网络(Graph Neural Networks, GNNs)是一种专门用于处理图结构数据的深度学习模型。图结构数据在现实世界中非常常见,例如社交网络、蛋白质相互作用网络、交通网络等。GNNs在多个行业中都有应用,以下是一些主要的应用领域: 1. **社交网络分析**: - 推荐系统:通过分析用户之间的关系和兴趣来推荐朋友或内容。 - 社区检测:识别社交网络中的社区结构,了解用户群体。 2. **生物信息学**: - 蛋白质结构预测:通过分析蛋白质之间的相互作用来预测其三维结构。 - 药物发现:通过分析药物分子和蛋白质之间的相互作用来发现新药。 3. **交通网络**: - 交通流量预测:通过分析交通网络中的节点和边来预测交通流量。 - 路线规划:优化城市交通路线,减少拥堵。 4. **电网管理**: - 电网优化:通过分析电网中的节点和边来优化电力分配。 - 故障检测:通过分析电网中的异常模式来检测潜在的故障。 5. **金融风控**: - 欺诈检测:通过分析交易网络中的模式来识别欺诈行为。 - 信用评分:通过分析用户在金融网络中的行为来评估信用风险。 6. **知识图谱**: - 问答系统:通过分析知识图谱中的实体和关系来提供准确的答案。 - 语义搜索:通过分析知识图谱中的结构来提供更精确的搜索结果。 7. **推荐系统**: - 协同过滤:通过分析用户和物品之间的图结构来提供个性化推荐。 - 内容推荐:通过分析内容之间的关系来推荐相关内容。 8. **网络安全**: - 入侵检测:通过分析网络流量图中的异常模式来检测潜在的网络攻击。 - 恶意软件分析:通过分析恶意软件的传播网络来识别和防御恶意软件。 图神经网络的应用正在不断扩展,随着技术的进步,它们在更多领域中的应用将会被发掘和实现。由于图结构数据的普遍性,GNNs在处理复杂关系和模式识别方面具有独特的优势,因此在未来的行业应用中具有巨大的潜力。

2024-06-05

使用机器学习对城市房价进行预估.zip

【国外优秀项目】 图神经网络(Graph Neural Networks, GNNs)是一种专门用于处理图结构数据的深度学习模型。图结构数据在现实世界中非常常见,例如社交网络、蛋白质相互作用网络、交通网络等。GNNs在多个行业中都有应用,以下是一些主要的应用领域: 1. **社交网络分析**: - 推荐系统:通过分析用户之间的关系和兴趣来推荐朋友或内容。 - 社区检测:识别社交网络中的社区结构,了解用户群体。 2. **生物信息学**: - 蛋白质结构预测:通过分析蛋白质之间的相互作用来预测其三维结构。 - 药物发现:通过分析药物分子和蛋白质之间的相互作用来发现新药。 3. **交通网络**: - 交通流量预测:通过分析交通网络中的节点和边来预测交通流量。 - 路线规划:优化城市交通路线,减少拥堵。 4. **电网管理**: - 电网优化:通过分析电网中的节点和边来优化电力分配。 - 故障检测:通过分析电网中的异常模式来检测潜在的故障。 5. **金融风控**: - 欺诈检测:通过分析交易网络中的模式来识别欺诈行为。 - 信用评分:通过分析用户在金融网络中的行为来评估信用风险。 6. **知识图谱**: - 问答系统:通过分析知识图谱中的实体和关系来提供准确的答案。 - 语义搜索:通过分析知识图谱中的结构来提供更精确的搜索结果。 7. **推荐系统**: - 协同过滤:通过分析用户和物品之间的图结构来提供个性化推荐。 - 内容推荐:通过分析内容之间的关系来推荐相关内容。 8. **网络安全**: - 入侵检测:通过分析网络流量图中的异常模式来检测潜在的网络攻击。 - 恶意软件分析:通过分析恶意软件的传播网络来识别和防御恶意软件。 图神经网络的应用正在不断扩展,随着技术的进步,它们在更多领域中的应用将会被发掘和实现。由于图结构数据的普遍性,GNNs在处理复杂关系和模式识别方面具有独特的优势,因此在未来的行业应用中具有巨大的潜力。

2024-06-05

图神经网络各个算法.zip

【国外优秀项目】 图神经网络(Graph Neural Networks, GNNs)是一种专门用于处理图结构数据的深度学习模型。图结构数据在现实世界中非常常见,例如社交网络、蛋白质相互作用网络、交通网络等。GNNs在多个行业中都有应用,以下是一些主要的应用领域: 1. **社交网络分析**: - 推荐系统:通过分析用户之间的关系和兴趣来推荐朋友或内容。 - 社区检测:识别社交网络中的社区结构,了解用户群体。 2. **生物信息学**: - 蛋白质结构预测:通过分析蛋白质之间的相互作用来预测其三维结构。 - 药物发现:通过分析药物分子和蛋白质之间的相互作用来发现新药。 3. **交通网络**: - 交通流量预测:通过分析交通网络中的节点和边来预测交通流量。 - 路线规划:优化城市交通路线,减少拥堵。 4. **电网管理**: - 电网优化:通过分析电网中的节点和边来优化电力分配。 - 故障检测:通过分析电网中的异常模式来检测潜在的故障。 5. **金融风控**: - 欺诈检测:通过分析交易网络中的模式来识别欺诈行为。 - 信用评分:通过分析用户在金融网络中的行为来评估信用风险。 6. **知识图谱**: - 问答系统:通过分析知识图谱中的实体和关系来提供准确的答案。 - 语义搜索:通过分析知识图谱中的结构来提供更精确的搜索结果。 7. **推荐系统**: - 协同过滤:通过分析用户和物品之间的图结构来提供个性化推荐。 - 内容推荐:通过分析内容之间的关系来推荐相关内容。 8. **网络安全**: - 入侵检测:通过分析网络流量图中的异常模式来检测潜在的网络攻击。 - 恶意软件分析:通过分析恶意软件的传播网络来识别和防御恶意软件。 图神经网络的应用正在不断扩展,随着技术的进步,它们在更多领域中的应用将会被发掘和实现。由于图结构数据的普遍性,GNNs在处理复杂关系和模式识别方面具有独特的优势,因此在未来的行业应用中具有巨大的潜力。

2024-06-05

自动驾驶AI小车,基于遗传算法优化神经网络.zip

【国外优秀项目】 神经网络(Neural Networks)、卷积神经网络(Convolutional Neural Networks, CNNs)和遗传算法(Genetic Algorithms, GAs)是人工智能领域的三种不同技术,它们各自有不同的应用和特点。 1. **神经网络(Neural Networks)**: 神经网络是一种受人脑启发的计算模型,它由大量的节点(或称为“神经元”)组成,这些节点通常分层排列。神经网络通过学习从输入到输出的映射关系来解决各种问题,如分类、回归和模式识别。神经网络的学习过程通常涉及调整节点之间的连接权重,以最小化预测输出与实际输出之间的差异。 2. **卷积神经网络(Convolutional Neural Networks, CNNs)**: CNNs是一种特殊类型的神经网络,专门用于处理具有已知网格状拓扑的数据,如图像。CNNs的核心是卷积层,它通过在输入数据上滑动小的滤波器(或称为“卷积核”)来提取特征。这些特征随后被传递到网络的后续层进行进一步的处理。CNNs在图像识别、视频分析、医学图像处理等领域表现出色。 3. **遗传算法(Genetic Algorithms, GAs)**: GAs是一种模拟自然选择和遗传机制的搜索算法。它们通常用于优化和搜索问题。遗传算法通过模拟生物进化过程中的选择、交叉(杂交)和变异等操作来演化出问题的解决方案。GAs从一个可能解的种群开始,通过迭代过程不断改进解的质量,直到找到满意的解决方案或达到预定的停止条件。 这三种技术可以独立使用,也可以结合使用。例如,神经网络和CNNs通常用于模式识别和预测问题,而遗传算法可以用于优化神经网络的结构或参数。在某些情况下,遗传算法甚至可以用来训练神经网络

2024-06-05

用BP算法实现神经网络.zip

【国外优秀项目】 神经网络在计算机视觉(Computer Vision, CV)领域扮演着至关重要的角色。计算机视觉旨在使计算机能够“看”和理解图像或视频中的内容,而神经网络,尤其是深度学习模型,已经成为实现这一目标的关键技术。以下是神经网络在计算机视觉中的一些主要应用: 1. **图像分类**: 神经网络可以将图像分类到不同的类别中。例如,一个深度卷积神经网络(CNN)可以识别图像中的对象是猫、狗还是其他动物。 2. **目标检测**: 神经网络可以识别图像中的多个对象,并确定它们的位置和类别。例如,使用R-CNN、Fast R-CNN、Faster R-CNN、YOLO(You Only Look Once)或SSD(Single Shot MultiBox Detector)等算法。 3. **图像分割**: 神经网络可以将图像分割成多个区域,每个区域对应于图像中的一个对象或背景。这包括语义分割(为图像中的每个像素分配类别标签)和实例分割(区分同一类别的不同实例)。 4. **人脸识别**: 神经网络可以识别和验证人脸。这在安全访问控制、社交媒体标签建议等场景中非常有用。 5. **姿态估计**: 神经网络可以估计图像或视频中人物的关节位置,从而推断出他们的身体姿态。 6. **图像生成和增强**: 神经网络可以生成新的图像,或者增强现有图像的质量。例如,使用生成对抗网络(GAN)生成逼真的图像,或者使用超分辨率技术提高图像的分辨率。

2024-06-05

用logistic回归,SVM,神经网络实现分类算法.zip

【国外优秀项目】 神经网络在计算机视觉(Computer Vision, CV)领域扮演着至关重要的角色。计算机视觉旨在使计算机能够“看”和理解图像或视频中的内容,而神经网络,尤其是深度学习模型,已经成为实现这一目标的关键技术。以下是神经网络在计算机视觉中的一些主要应用: 1. **图像分类**: 神经网络可以将图像分类到不同的类别中。例如,一个深度卷积神经网络(CNN)可以识别图像中的对象是猫、狗还是其他动物。 2. **目标检测**: 神经网络可以识别图像中的多个对象,并确定它们的位置和类别。例如,使用R-CNN、Fast R-CNN、Faster R-CNN、YOLO(You Only Look Once)或SSD(Single Shot MultiBox Detector)等算法。 3. **图像分割**: 神经网络可以将图像分割成多个区域,每个区域对应于图像中的一个对象或背景。这包括语义分割(为图像中的每个像素分配类别标签)和实例分割(区分同一类别的不同实例)。 4. **人脸识别**: 神经网络可以识别和验证人脸。这在安全访问控制、社交媒体标签建议等场景中非常有用。 5. **姿态估计**: 神经网络可以估计图像或视频中人物的关节位置,从而推断出他们的身体姿态。 6. **图像生成和增强**: 神经网络可以生成新的图像,或者增强现有图像的质量。例如,使用生成对抗网络(GAN)生成逼真的图像,或者使用超分辨率技术提高图像的分辨率。

2024-06-05

一个蒙特卡洛树搜索算法实现的五子棋 AI+现可用神经网络训练模型。.zip

【国外优秀项目】 神经网络,尤其是深度学习模型,已经在多个行业中找到了广泛的应用。以下是一些主要的行业应用示例: 1. **金融服务业**: - 信用评分:使用神经网络来评估贷款申请人的信用风险。 - 欺诈检测:通过分析交易模式来识别信用卡欺诈或洗钱行为。 - 算法交易:利用神经网络预测股票市场走势,进行自动化交易。 2. **医疗保健**: - 疾病诊断:使用深度学习分析医学影像(如X光、CT、MRI)来辅助诊断癌症等疾病。 - 药物发现:通过神经网络预测分子与蛋白质的相互作用,加速新药的研发。 - 个性化治疗:根据患者的遗传信息和临床数据推荐最佳治疗方案。 3. **零售和电子商务**: - 推荐系统:使用神经网络为用户推荐商品。 - 需求预测:预测产品需求,优化库存管理。 - 客户细分:通过分析客户行为数据来进行市场细分和目标营销。 4. **制造业**: - 预测性维护:通过分析机器传感器数据来预测设备故障,减少停机时间。 - 质量控制:使用图像识别技术自动检测产品缺陷。 - 供应链优化:通过神经网络模型优化生产计划和物流。 5. **交通运输**: - 自动驾驶汽车:使用深度学习处理来自车辆传感器的数据,实现环境感知和决策。 - 交通流量管理:通过分析交通数据来优化信号灯控制,减少拥堵。 - 航空业:预测航班延误,优化航线和机组调度。 6. **电信**: - 网络优化:使用神经网络来预测网络流量模式,优化资源分配。 - 客户流失预测:分析客户行为来预测并减少客户流失。 7. **能源**: - 能源消耗预测:预测电力需求,优化发电和分配。 - 风力和太阳能发电预测:通过神经网络模型预测可再生能源的产量。 8. **安全领域**: - 视频监控:使用深度学习进行人脸识别、异常行为检测。 - 网络安全:通过神经网络检测和防御网络

2024-06-05

使用神经网络+ 遗传算法实现机器人路径规划.zip

【国外优秀项目】 图神经网络(Graph Neural Networks, GNNs)是一种专门用于处理图结构数据的深度学习模型。图结构数据在现实世界中非常常见,例如社交网络、蛋白质相互作用网络、交通网络等。GNNs在多个行业中都有应用,以下是一些主要的应用领域: 1. **社交网络分析**: - 推荐系统:通过分析用户之间的关系和兴趣来推荐朋友或内容。 - 社区检测:识别社交网络中的社区结构,了解用户群体。 2. **生物信息学**: - 蛋白质结构预测:通过分析蛋白质之间的相互作用来预测其三维结构。 - 药物发现:通过分析药物分子和蛋白质之间的相互作用来发现新药。 3. **交通网络**: - 交通流量预测:通过分析交通网络中的节点和边来预测交通流量。 - 路线规划:优化城市交通路线,减少拥堵。 4. **电网管理**: - 电网优化:通过分析电网中的节点和边来优化电力分配。 - 故障检测:通过分析电网中的异常模式来检测潜在的故障。 5. **金融风控**: - 欺诈检测:通过分析交易网络中的模式来识别欺诈行为。 - 信用评分:通过分析用户在金融网络中的行为来评估信用风险。 6. **知识图谱**: - 问答系统:通过分析知识图谱中的实体和关系来提供准确的答案。 - 语义搜索:通过分析知识图谱中的结构来提供更精确的搜索结果。 7. **推荐系统**: - 协同过滤:通过分析用户和物品之间的图结构来提供个性化推荐。 - 内容推荐:通过分析内容之间的关系来推荐相关内容。 8. **网络安全**: - 入侵检测:通过分析网络流量图中的异常模式来检测潜在的网络攻击。 - 恶意软件分析:通过分析恶意软件的传播网络来识别和防御恶意软件。 图神经网络的应用正在不断扩展,随着技术的进步,它们在更多领域中的应用将会被发掘和实现。由于图结构数据的普遍性,GNNs在处理复杂关系和模式识别方面具有独特的优势,因此在未来的行业应用中具有巨大的潜力。

2024-06-05

神经网络入门 实现测评针对分类问题的攻击 防御算法.zip

【国外优秀项目】 神经网络,尤其是深度学习模型,已经在多个行业中找到了广泛的应用。以下是一些主要的行业应用示例: 1. **金融服务业**: - 信用评分:使用神经网络来评估贷款申请人的信用风险。 - 欺诈检测:通过分析交易模式来识别信用卡欺诈或洗钱行为。 - 算法交易:利用神经网络预测股票市场走势,进行自动化交易。 2. **医疗保健**: - 疾病诊断:使用深度学习分析医学影像(如X光、CT、MRI)来辅助诊断癌症等疾病。 - 药物发现:通过神经网络预测分子与蛋白质的相互作用,加速新药的研发。 - 个性化治疗:根据患者的遗传信息和临床数据推荐最佳治疗方案。 3. **零售和电子商务**: - 推荐系统:使用神经网络为用户推荐商品。 - 需求预测:预测产品需求,优化库存管理。 - 客户细分:通过分析客户行为数据来进行市场细分和目标营销。 4. **制造业**: - 预测性维护:通过分析机器传感器数据来预测设备故障,减少停机时间。 - 质量控制:使用图像识别技术自动检测产品缺陷。 - 供应链优化:通过神经网络模型优化生产计划和物流。 5. **交通运输**: - 自动驾驶汽车:使用深度学习处理来自车辆传感器的数据,实现环境感知和决策。 - 交通流量管理:通过分析交通数据来优化信号灯控制,减少拥堵。 - 航空业:预测航班延误,优化航线和机组调度。 6. **电信**: - 网络优化:使用神经网络来预测网络流量模式,优化资源分配。 - 客户流失预测:分析客户行为来预测并减少客户流失。 7. **能源**: - 能源消耗预测:预测电力需求,优化发电和分配。 - 风力和太阳能发电预测:通过神经网络模型预测可再生能源的产量。 8. **安全领域**: - 视频监控:使用深度学习进行人脸识别、异常行为检测。 - 网络安全:通过神经网络检测和防御网络

2024-06-05

在MATLAB上实现车牌识别的程序,识别算法有两种,分别为神经网络和模板匹配.zip

【国外优秀项目】 神经网络(Neural Networks)、卷积神经网络(Convolutional Neural Networks, CNNs)和遗传算法(Genetic Algorithms, GAs)是人工智能领域的三种不同技术,它们各自有不同的应用和特点。 1. **神经网络(Neural Networks)**: 神经网络是一种受人脑启发的计算模型,它由大量的节点(或称为“神经元”)组成,这些节点通常分层排列。神经网络通过学习从输入到输出的映射关系来解决各种问题,如分类、回归和模式识别。神经网络的学习过程通常涉及调整节点之间的连接权重,以最小化预测输出与实际输出之间的差异。 2. **卷积神经网络(Convolutional Neural Networks, CNNs)**: CNNs是一种特殊类型的神经网络,专门用于处理具有已知网格状拓扑的数据,如图像。CNNs的核心是卷积层,它通过在输入数据上滑动小的滤波器(或称为“卷积核”)来提取特征。这些特征随后被传递到网络的后续层进行进一步的处理。CNNs在图像识别、视频分析、医学图像处理等领域表现出色。 3. **遗传算法(Genetic Algorithms, GAs)**: GAs是一种模拟自然选择和遗传机制的搜索算法。它们通常用于优化和搜索问题。遗传算法通过模拟生物进化过程中的选择、交叉(杂交)和变异等操作来演化出问题的解决方案。GAs从一个可能解的种群开始,通过迭代过程不断改进解的质量,直到找到满意的解决方案或达到预定的停止条件。 这三种技术可以独立使用,也可以结合使用。例如,神经网络和CNNs通常用于模式识别和预测问题,而遗传算法可以用于优化神经网络的结构或参数。在某些情况下,遗传算法甚至可以用来训练神经网络

2024-06-05

梯度下降算法的神经网络例子.zip

【国外优秀项目】 图神经网络(Graph Neural Networks, GNNs)是一种专门用于处理图结构数据的深度学习模型。图结构数据在现实世界中非常常见,例如社交网络、蛋白质相互作用网络、交通网络等。GNNs在多个行业中都有应用,以下是一些主要的应用领域: 1. **社交网络分析**: - 推荐系统:通过分析用户之间的关系和兴趣来推荐朋友或内容。 - 社区检测:识别社交网络中的社区结构,了解用户群体。 2. **生物信息学**: - 蛋白质结构预测:通过分析蛋白质之间的相互作用来预测其三维结构。 - 药物发现:通过分析药物分子和蛋白质之间的相互作用来发现新药。 3. **交通网络**: - 交通流量预测:通过分析交通网络中的节点和边来预测交通流量。 - 路线规划:优化城市交通路线,减少拥堵。 4. **电网管理**: - 电网优化:通过分析电网中的节点和边来优化电力分配。 - 故障检测:通过分析电网中的异常模式来检测潜在的故障。 5. **金融风控**: - 欺诈检测:通过分析交易网络中的模式来识别欺诈行为。 - 信用评分:通过分析用户在金融网络中的行为来评估信用风险。 6. **知识图谱**: - 问答系统:通过分析知识图谱中的实体和关系来提供准确的答案。 - 语义搜索:通过分析知识图谱中的结构来提供更精确的搜索结果。 7. **推荐系统**: - 协同过滤:通过分析用户和物品之间的图结构来提供个性化推荐。 - 内容推荐:通过分析内容之间的关系来推荐相关内容。 8. **网络安全**: - 入侵检测:通过分析网络流量图中的异常模式来检测潜在的网络攻击。 - 恶意软件分析:通过分析恶意软件的传播网络来识别和防御恶意软件。 图神经网络的应用正在不断扩展,随着技术的进步,它们在更多领域中的应用将会被发掘和实现。由于图结构数据的普遍性,GNNs在处理复杂关系和模式识别方面具有独特的优势,因此在未来的行业应用中具有巨大的潜力。

2024-06-05

使用 Django 框架搭建学习平台,实现KNN、ID3、C4.5、SVM、朴素贝叶斯、BP神经网络等算法及流程管理.zip

【国外优秀项目】 图神经网络(Graph Neural Networks, GNNs)是一种专门用于处理图结构数据的深度学习模型。图结构数据在现实世界中非常常见,例如社交网络、蛋白质相互作用网络、交通网络等。GNNs在多个行业中都有应用,以下是一些主要的应用领域: 1. **社交网络分析**: - 推荐系统:通过分析用户之间的关系和兴趣来推荐朋友或内容。 - 社区检测:识别社交网络中的社区结构,了解用户群体。 2. **生物信息学**: - 蛋白质结构预测:通过分析蛋白质之间的相互作用来预测其三维结构。 - 药物发现:通过分析药物分子和蛋白质之间的相互作用来发现新药。 3. **交通网络**: - 交通流量预测:通过分析交通网络中的节点和边来预测交通流量。 - 路线规划:优化城市交通路线,减少拥堵。 4. **电网管理**: - 电网优化:通过分析电网中的节点和边来优化电力分配。 - 故障检测:通过分析电网中的异常模式来检测潜在的故障。 5. **金融风控**: - 欺诈检测:通过分析交易网络中的模式来识别欺诈行为。 - 信用评分:通过分析用户在金融网络中的行为来评估信用风险。 6. **知识图谱**: - 问答系统:通过分析知识图谱中的实体和关系来提供准确的答案。 - 语义搜索:通过分析知识图谱中的结构来提供更精确的搜索结果。 7. **推荐系统**: - 协同过滤:通过分析用户和物品之间的图结构来提供个性化推荐。 - 内容推荐:通过分析内容之间的关系来推荐相关内容。 8. **网络安全**: - 入侵检测:通过分析网络流量图中的异常模式来检测潜在的网络攻击。 - 恶意软件分析:通过分析恶意软件的传播网络来识别和防御恶意软件。 图神经网络的应用正在不断扩展,随着技术的进步,它们在更多领域中的应用将会被发掘和实现。由于图结构数据的普遍性,GNNs在处理复杂关系和模式识别方面具有独特的优势,因此在未来的行业应用中具有巨大的潜力。

2024-06-05

.net core Webapi代码生成工具(自动连接数据库)

另外,我这里有漂亮的自动生成脚本。我也可以教你怎么用。

2025-02-07

ar家具购物平台,个人毕业设计.zip

【优秀毕设项目】:主题见资源标题

2024-06-05

2019本科毕业设计:基于UNet的遥感图像语义分割.zip

【优秀毕业设计项目】:主题见资源标题。

2024-06-05

2021年毕业设计 (计算机科学与技术专业).zip

【优秀毕设项目】:主题见资源标题

2024-06-05

2021.6毕业设计-基于SSM与Java的电影网站的设计与实现.zip

【优秀毕设项目】:主题见资源标题

2024-06-05

BiShe Project 毕业设计 测井数据采集系统.zip

【优秀毕设项目】:主题见资源标题

2024-06-05

2019年毕业设计-解魔方机器人.zip

【优秀毕业设计项目】:主题见资源标题。

2024-06-05

2019毕业设计,基于android 的测量程序设计.zip

【优秀毕业设计项目】:主题见资源标题。

2024-06-05

针对三维模型检索,并采用卷积神经网络.zip

【国外优秀项目】 神经网络(Neural Networks)、卷积神经网络(Convolutional Neural Networks, CNNs)和遗传算法(Genetic Algorithms, GAs)是人工智能领域的三种不同技术,它们各自有不同的应用和特点。 1. **神经网络(Neural Networks)**: 神经网络是一种受人脑启发的计算模型,它由大量的节点(或称为“神经元”)组成,这些节点通常分层排列。神经网络通过学习从输入到输出的映射关系来解决各种问题,如分类、回归和模式识别。神经网络的学习过程通常涉及调整节点之间的连接权重,以最小化预测输出与实际输出之间的差异。 2. **卷积神经网络(Convolutional Neural Networks, CNNs)**: CNNs是一种特殊类型的神经网络,专门用于处理具有已知网格状拓扑的数据,如图像。CNNs的核心是卷积层,它通过在输入数据上滑动小的滤波器(或称为“卷积核”)来提取特征。这些特征随后被传递到网络的后续层进行进一步的处理。CNNs在图像识别、视频分析、医学图像处理等领域表现出色。 3. **遗传算法(Genetic Algorithms, GAs)**: GAs是一种模拟自然选择和遗传机制的搜索算法。它们通常用于优化和搜索问题。遗传算法通过模拟生物进化过程中的选择、交叉(杂交)和变异等操作来演化出问题的解决方案。GAs从一个可能解的种群开始,通过迭代过程不断改进解的质量,直到找到满意的解决方案或达到预定的停止条件。 这三种技术可以独立使用,也可以结合使用。例如,神经网络和CNNs通常用于模式识别和预测问题,而遗传算法可以用于优化神经网络的结构或参数。在某些情况下,遗传算法甚至可以用来训练神经网络

2024-06-05

2017.8.28毕业设计,VB论坛网站,用到php,mysql,html,css,js,jquery.zip

【优秀毕业设计项目】:主题见资源标题。

2024-06-05

2019年-毕业设计-百度网盘资源搜索引擎网站的设计与实现.zip

【优秀毕业设计项目】:主题见资源标题。

2024-06-05

Chinese Rumor Recognition 本科毕业设计论文-中文谣言检测.zip

【优秀毕设项目】:主题见资源标题

2024-06-05

2017毕业设计:基于android的测量程序设计.zip

【优秀毕业设计项目】:主题见资源标题。

2024-06-05

2018毕业设计,多人房间匹配你画我猜

【优秀毕业设计项目】:主题见资源标题。

2024-06-05

2022毕业设计Vue_SpringBoot.zip

【优秀毕设项目】:主题见资源标题

2024-06-05

1412基于Python卷积神经网络人脸识别驾驶员疲劳检测与预警系统设计毕业源码案例设计.zip

【优秀毕业设计项目】:主题见资源标题。

2024-06-05

2020毕业设计:毕业设计选题系统.zip

【优秀毕业设计项目】:主题见资源标题。

2024-06-05

2016毕业设计_航空订票系统的设计与实现.zip

【优秀毕业设计项目】:主题见资源标题。

2024-06-05

2022 毕业设计,基于 Hadoop 的游戏数据分析系统.zip

【优秀毕设项目】:主题见资源标题

2024-06-05

针对无线信道“指纹”特征建模.zip

【国外优秀项目】 神经网络(Neural Networks)、卷积神经网络(Convolutional Neural Networks, CNNs)和遗传算法(Genetic Algorithms, GAs)是人工智能领域的三种不同技术,它们各自有不同的应用和特点。 1. **神经网络(Neural Networks)**: 神经网络是一种受人脑启发的计算模型,它由大量的节点(或称为“神经元”)组成,这些节点通常分层排列。神经网络通过学习从输入到输出的映射关系来解决各种问题,如分类、回归和模式识别。神经网络的学习过程通常涉及调整节点之间的连接权重,以最小化预测输出与实际输出之间的差异。 2. **卷积神经网络(Convolutional Neural Networks, CNNs)**: CNNs是一种特殊类型的神经网络,专门用于处理具有已知网格状拓扑的数据,如图像。CNNs的核心是卷积层,它通过在输入数据上滑动小的滤波器(或称为“卷积核”)来提取特征。这些特征随后被传递到网络的后续层进行进一步的处理。CNNs在图像识别、视频分析、医学图像处理等领域表现出色。 3. **遗传算法(Genetic Algorithms, GAs)**: GAs是一种模拟自然选择和遗传机制的搜索算法。它们通常用于优化和搜索问题。遗传算法通过模拟生物进化过程中的选择、交叉(杂交)和变异等操作来演化出问题的解决方案。GAs从一个可能解的种群开始,通过迭代过程不断改进解的质量,直到找到满意的解决方案或达到预定的停止条件。 这三种技术可以独立使用,也可以结合使用。例如,神经网络和CNNs通常用于模式识别和预测问题,而遗传算法可以用于优化神经网络的结构或参数。在某些情况下,遗传算法甚至可以用来训练神经网络

2024-06-05

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除