自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

百锦再的博客

每天进步一点点,成全别人,成就自己。

  • 博客(984)
  • 资源 (18)
  • 收藏
  • 关注

原创 国产数据库,适合的才是最好的!

从技术原理、场景适配、实战落地等多个维度,为大家呈现融合数据库在制造业的独特价值。活动现场,您还将有机会与同行精英面对面交流,探讨制造业数据管理的痛点与解决方案,拓展行业人脉,为企业的数字化转型汲取新思路。然而,海量数据的无序流转、设备故障的突发而至,往往让制造企业陷入 “数据听不懂、故障预见难” 的困境。为助力制造企业借助融合数据库实现数据价值的深度挖掘与设备故障的精准预判,我们诚挚邀请行业同仁共赴KING大咖面对面沙龙,深入探讨融合数据库在制造业的实践之道。:长春富力万达文华酒店 净月潭厅(3F)

2025-07-27 16:33:58 36623

原创 对接京东、抖音等大厂接口的全方位技术素养指南

本文深入探讨了企业级接口对接的核心技术要点,重点分析了京东、抖音等大型平台的API实现规范。主要内容包括:1)HTTP协议与RESTful规范的深度应用,强调请求方法语义和状态码处理;2)JSON数据格式的精细处理方案,涉及空值、日期和大数字等特殊场景;3)多层次安全认证体系,涵盖OAuth 2.0和签名机制实现;4)端到端加密方案,包含TLS传输加密和敏感字段加密;5)数字签名生成算法对比及访问控制策略。文章通过具体代码示例,展示了签名生成、令牌刷新、字段加密等关键技术实现,为企业构建安全可靠的接口对接体

2025-07-26 21:11:39 610

原创 树形数据展示:树形表格与树形控件的深度对比(Vue实现)

本文探讨了树形数据结构的两种可视化实现方式:树形表格和树形控件。树形表格通过递归组件实现多列数据展示,支持节点展开/折叠和点击查看详情功能,适用于需要展示多属性层级数据的场景。代码示例展示了Vue实现的树形表格组件,包含表头、缩进层级、节点详情等功能。树形表格适合文件系统、组织架构等需要同时查看层级关系和详细属性的场景,而树形控件则更专注于展示纯层级结构。两种方式各有优劣,开发者应根据具体需求选择合适的数据展示方案。

2025-07-26 20:52:30 600

原创 和《首席信息官》一起看国产数据库

AI时代数据库一体机市场竞争激烈,电科金仓推出新一代"云数据库-AI版",以赤兔引擎、的卢模型和绝影盾甲三大核心优势实现性能、智能和安全突破。该产品支持百万级并发、AI智能运维和全链路安全防护,已在医疗、教育、央国企等多个领域成功应用。此次发布标志着电科金仓从传统数据库厂商向智能数据基础设施提供商的战略转型,展现了国产数据库在AI时代的技术实力和市场竞争力。

2025-07-25 11:39:51 28847 20

原创 WPF依赖属性深度解析:从原理到高级应用

摘要: 依赖属性是WPF的核心特性,与CLR属性不同,它由WPF属性系统统一管理,支持值继承、自动变更通知和多来源值设置。创建自定义依赖属性需定义静态DependencyProperty字段,并通过Register方法注册,同时提供CLR属性包装器。依赖属性还支持三种回调机制:PropertyChangedCallback处理值变更,ValidateValueCallback验证值有效性,CoerceValueCallback强制修正值范围。这些机制共同增强了WPF控件的灵活性和功能性。

2025-07-25 03:00:48 1021 18

原创 林修远说:Java让我变得更优雅

《转型之路:从C#培训班到Java架构师的抉择》 林修远站在人生十字路口:一边是年薪高出40%的C#高薪机会,一边是深耕三年的Java技术路线。三年前,这个只会写"Hello World"的培训班学员,在生存压力下被迫从C#转向Java,经历了痛苦的转型期——环境配置的挫败、思维方式的碰撞、导师张明的严苛要求。通过持续学习《Java编程思想》和项目实践,他逐渐领悟到Java"选择与组合"的哲学魅力,最终成长为能独立负责后端架构的高级开发。面对高薪诱惑,林修远最终选择了

2025-07-24 23:08:08 879 45

原创 陈昊说:C#让我变得更优雅

本文讲述了销售员陈昊转行IT的心路历程。在Java培训中受挫后,他偶然接触C#并被其简洁优雅的特性吸引。尽管面临Java岗位更多、收入更高的现实,他仍坚持对C#的热爱。职场中,他用C#的创新方案获得认可,但也遭受同事质疑。项目结束后,他拒绝转Java而选择离职,经历多次求职挫折,最终因对技术的独特见解被微软系公司录用为C#架构师。故事展现了技术人在现实与理想间的抉择,以及坚持技术信仰的价值。

2025-07-24 22:43:39 875 34

原创 前言讯息:新时代下国产数据库的大浪淘沙之旅

金仓数据库提出"融合+AI"战略应对AI时代挑战 中国电科旗下金仓数据库在7月15日发布会上提出,未来数据库应以"融合"为体、"AI"为用的发展理念。电科金仓高级副总裁冷建全指出,在行业追逐AI热点时,金仓选择以"五个一体化"融合能力筑基,让AI成为加速器。 金仓的"五个一体化"包括:多语法体系兼容、多集群架构、多模数据存储、多应用场景处理和开发运维一体化管理。这些能力可显著降低国产化替代的总拥有成本。 在A

2025-07-23 20:55:04 36691 37

原创 WPF UI 框架全面指南:从入门到实战

摘要: WPF(Windows Presentation Foundation)是微软推出的桌面应用UI框架,开发者常借助第三方UI框架提升开发效率和视觉效果。本文介绍了三款主流WPF框架: MaterialDesignInXamlToolkit:基于Google Material Design,提供丰富组件、主题切换和动画效果,适合现代化设计需求。 HandyControl:包含80+自定义控件,支持主题切换和实用工具,适合功能丰富的应用开发。 MahApps.Metro:采用扁平化Metro风格,优化窗

2025-07-23 16:52:56 807 28

原创 Vue + Element Plus 组件递归调用详解

Vue递归组件与Element Plus应用指南 本文详细介绍了Vue 3与Element Plus中递归组件的实现与应用。主要内容包括: 递归组件基础:解释了递归组件的概念、适用场景(树形结构、嵌套菜单等)和实现必要条件(name选项、终止条件) 基础实现:展示了最简单的递归组件示例,通过组件自引用和props传递数据,每个实例维护自身状态 Element Plus集成: 使用el-tree内置递归功能实现树形结构 通过插槽自定义树节点内容 利用el-menu实现多级嵌套菜单 进阶技巧:包括自定义节点操作

2025-07-23 14:29:36 675 38

原创 职场老人历险记:不安全科技有限公司的坑

《不安全的开始》讲述了一位年轻工程师齐磊入职"不安全的科技有限公司"后的职场遭遇。文章通过六个章节展现了其在技术主管徐部董高压管理下的痛苦经历:从发现技术问题被忽视(危险的Modbus),到现场问题被归咎(GNSS的闹剧),再到专业能力被贬低(复制的耻辱)。最终,齐磊在部门会议上揭露主管的技术短板后主动辞职。故事生动刻画了职场新人在不合理管理下的挣扎与觉醒,以及最终选择捍卫专业尊严的成长历程。文中"保护自己比完成任务更重要"等细节深刻揭示了某些企业的管理弊端。

2025-07-23 10:07:36 1096 35

原创 Vue 动态组件递归渲染实现无限深度树结构

本文介绍了在Vue中实现无限深度树结构的解决方案,主要包含以下内容: 数据结构设计:定义了包含节点信息、问题和子节点的树形结构格式 递归组件实现:创建了TreeItem组件,通过动态组件渲染不同类型的题目(单选/多选) 问题组件开发:分别实现了Danxuan和Duoxuan组件处理单选和多选题 优化方案: 使用provide/inject进行状态管理 动态组件懒加载 通过虚拟滚动、记忆化、数据冻结等技术提升性能 该方案能有效处理无限深度的树形结构,支持多种题型混合展示,并提供了性能优化建议。

2025-07-23 09:34:43 570 16

原创 数据仓库的一波三折

一波三折的数据库

2025-07-22 13:50:40 39882 11

原创 浅谈上位机需要掌握的几个协议

本文介绍了三种常见的工业通信协议:串口通信(RS-232/RS-485)、Modbus和CAN总线。串口通信是最基础的通信方式,需配置波特率、数据位等参数;Modbus协议支持主从架构和多种数据传输方式(RTU/ASCII/TCP),包含多种功能码;CAN总线采用多主架构,具有高可靠性和非破坏性仲裁机制。针对每种协议,文章提供了C#实现示例和常见问题解决方案。这些协议广泛应用于工业自动化领域,具有简单、可靠、易于实现的特点,是上位机与下位机通信的关键技术。

2025-07-22 09:48:59 1004 2

原创 MDFilter 详解:用法与二次开发技巧

MDFilter 是一个基于 Markdown 的增强型内容过滤系统,结合了文本预处理和 AST 语法树处理能力。它支持多协议过滤、沙箱环境执行,并提供丰富的二次开发接口。核心功能包括:双重过滤机制(文本预处理+AST操作)、多协议支持(Markdown/HTML/DSL)和安全沙箱环境。系统提供插件化架构,支持自定义规则集、AST转换器和动态内容处理,适用于内容安全网关、动态模板引擎等企业级场景。开发者可通过 npm 快速安装,并利用丰富的 API 进行深度定制,包括自定义指令扩展、性能优化等高级功能。

2025-07-20 05:27:56 1026 4

原创 Vue使用element plus组件的细节问题之时间格式

- **古代时间计量**(公元前1500年-18世纪) - 日晷时代:以太阳过中天为“正午”,形成地方太阳时(Local Solar Time) - 城市独立计时:每个城市使用自己的钟楼时间(如伦敦当地时间比牛津快5分钟)- **铁路时刻表的革命**(19世纪30年代) - 英国铁路公司强制推行“伦敦时间”作为全国标准(1840) - 时区概念雏形:William Hyde Wollaston提出按经度划分时区(1828)

2025-07-20 05:17:38 672 3

原创 Entity Framework (EF) 深度解析

本文系统介绍了Entity Framework(EF)框架的核心概念、开发模式和功能实现。第一部分解析了EF的基础架构,包括发展历程、核心价值及分层设计(EDM模型、DbContext等)。第二部分详细对比了三种开发模式:Database First适合已有数据库项目,Model First支持可视化设计,Code First通过代码定义模型并提供了数据注解和Fluent API两种配置方式。第三部分深入探讨了EF核心功能,包括数据查询(基本查询、三种关联数据加载方式)、数据保存(增删改操作与事务管理)以及

2025-07-18 21:15:41 796 79

原创 京东店铺入鼎的全面分析与自研难度评估

京东入鼎平台深度解析:技术架构与自研挑战 京东入鼎是集店铺管理、智能运营、精准营销和数据分析于一体的商家服务平台,其技术优势体现在三方面:采用分布式微服务架构支撑百万级TPS交易;通过弹性伸缩应对大促流量高峰;实施多层安全防护保障数据安全。该平台可提升商家40%运营效率,增加20-45%免费流量,并优化22%以上的转化率。 自研同等系统面临显著挑战:需8-10名资深开发人员构建高并发架构,初期投入超500万元;功能完整度仅达入鼎平台的60%,且难以覆盖预售订金等复杂场景;完整开发周期至少1年,年人力成本超5

2025-07-18 19:04:00 814 79

原创 ThingJS开发从入门到精通:构建三维物联网可视化应用的完整指南

ThingJS是优锘科技推出的物联网三维可视化开发平台,基于WebGL技术构建,支持低代码开发和跨平台应用。其技术架构包含场景图系统、实体组件系统、材质系统等核心组件,广泛应用于智慧城市、工业互联网等领域。开发环境配置简单,通过ThingJS CLI工具可快速创建项目。基础概念包括核心对象模型(App、Scene等)、场景创建与管理、对象操作与查询等。实战示例展示了智慧园区监控应用的开发流程,包括场景加载、3D对象创建、事件处理等功能。事件系统支持鼠标/触摸事件、对象生命周期事件和自定义事件,具有冒泡和拦截

2025-07-17 01:06:57 1133 87

原创 Python实现的通用AI模型全方位测试完整方案(10万字)

本文提出了一套全面的AI模型测试方案框架,涵盖从基础功能到高级特性的全方位测试。方案包括16个章节,重点关注7大测试维度:基础功能、性能、鲁棒性、公平性与偏见、可解释性、安全性以及端到端系统测试。提供了Python实现代码示例,如环境检查脚本、数据质量验证工具和分层数据分割方法。该框架采用模块化设计,包含详细的测试目录结构和自动化测试流程,适用于大多数机器学习模型,旨在确保AI系统在实际部署前的可靠性、安全性和公平性。方案还强调了数据预处理、测试自动化以及持续监控的重要性。

2025-07-16 00:09:05 2187 171

原创 文心一言开源版部署及多维度测评实例

文心一言开源版是百度推出的高性能大语言模型,专为中文场景优化,具备强大的文本生成、理解与推理能力。该模型基于Transformer架构,融合了百度自研的动态词表技术与知识增强算法,在成语典故、专业术语等中文特色任务上表现优异,同时支持金融、医疗、法律等垂直领域的快速适配。

2025-07-15 23:41:54 2253 368

原创 高效阅读他人代码的全面指南

代码阅读与分析指南 本文系统介绍了代码阅读的方法论与实用技巧,涵盖从准备工作到团队协作的全流程。主要内容包括: 准备工作:强调理解项目背景、架构设计和搭建开发环境的重要性 核心策略:提出自上而下阅读方法,分享关键代码定位技巧 细节分析:讲解如何利用代码注释识别设计模式,分析测试代码 高级技术:介绍动态调试、代码修改验证和可视化工具的使用 认知策略:提供分块处理、模式匹配和建立心智模型的方法 团队协作:包含代码审查和知识共享的实践建议 本文提供了从基础到高级的代码阅读框架,包含大量语言示例和实用命令,帮助开发

2025-07-14 17:57:13 844 270

原创 Rider 全面解析:跨平台 .NET IDE 的核心技术与高效实践指南

Rider作为一款高效的.NET开发工具,基于IntelliJ平台构建,提供跨平台支持与卓越性能。核心特性包括:1) 深度集成ReSharper引擎,支持2500+代码检查规则;2) 专为Unity开发的调试组件;3) 轻量级安装(约500MB)和快速启动。针对Unity开发,Rider提供双向控制、增强日志分析和专用性能优化建议。安装配置方面,2024年起已对非商业用途免费,并提供键盘方案选择和内存调优建议。生产力工具包含智能重构、实时模板和必备快捷键(如Ctrl+B导航、Alt+Enter快速修复)。相

2025-07-13 00:29:18 1077 201

原创 Cursor使用初体验:我差点把自己的代码搞乱了

本文深度解析AI编程工具Cursor的实战应用与风险规避,揭示如何安全高效地驾驭这一革命性工具。从基础架构认知到高阶工程化实践,重点剖析智能对话开发、精准编辑等核心功能,提供多场景应用示例及安全操作规范。特别强调建立「精准控制+意图表达+安全防护」的协同范式,包括自定义指令库、团队规范强制实施等进阶技巧,并展望多模态编程等未来发展方向。文章指出,真正的效能提升在于培养与AI协同进化的元能力,而非简单接受输出,为开发者提供了一套完整的智能编程方法论。

2025-07-08 08:34:00 522 296

原创 数据存储技术全面指南:从TXT到时序数据库

本文全面探讨了不同数据存储技术的特性与应用场景。首先介绍了最简单的文本文件(TXT)存储,包括其基本特性、适用情境和代码示例。接着分析了CSV文件的结构化存储优势,展示了Python和Java的处理方法。然后深入讨论了关系型数据库(RDBMS)的特点,对比了TXT与CSV的差异。文章通过实际代码示例演示了各种存储技术的实现方式,并提供了性能优化建议,帮助开发者根据具体需求选择合适的数据存储方案。

2025-07-08 01:22:03 477 286

原创 OceanBase在.NET开发操作指南

.NET开发OceanBase数据库应用摘要 OceanBase作为阿里自研的分布式关系型数据库,支持高可用、高性能的.NET应用开发。本文介绍了在.NET环境中连接和操作OceanBase的关键技术: 环境配置:通过MySQL Connector/NET驱动连接OceanBase,支持连接池优化和多租户配置 基础操作:详细演示了表创建、数据CRUD等SQL操作实现 事务处理:展示了分布式环境下的ACID事务控制方法 性能优化:包括参数化查询、批量操作等技巧 开发中需注意OceanBase的分布式特性,合理

2025-07-07 13:29:55 911 219

原创 程序员的附加技能:Git 使用从入门到精通

Git 核心概念与工作流摘要 Git 是一个分布式版本控制系统,核心概念包括仓库、提交、分支和暂存区。标准工作流程为:修改→暂存→提交→推送。分支管理支持并行开发,推荐使用功能分支策略。远程协作通过 fetch/pull/push 实现,需注意解决冲突。高级功能包括贮藏变更、二分定位问题、历史重写等。撤销操作可恢复文件到不同状态。安装配置后,建议设置用户信息和实用别名。遵循约定式提交规范,保持清晰版本历史。 (字数:148)

2025-07-06 17:38:28 1758 175

原创 程序员的附加技能:Markdown使用技巧大全

《Markdown高效排版终极指南》摘要:本文系统梳理Markdown核心技术要点,从基础语法(标题、列表、强调)到高阶技巧(表格合并、代码高亮、HTML混编)。重点解析多平台兼容方案、Mermaid图表绘制、LaTeX公式集成等实战场景,提供自动化工具链(VS Code插件/Pandoc转换)和团队协作规范。附带20+代码示例、5种排版问题解决方案及调试方法,涵盖技术文档、项目管理的全场景应用需求,帮助用户突破Markdown功能边界,实现专业级文档产出。

2025-07-06 17:29:26 870 172

原创 详细解析 .NET 依赖注入的三种生命周期模式

ASP.NET Core 依赖注入生命周期对比 Transient(瞬时) 每次请求创建新实例 适用于无状态轻量级服务 优势:线程安全,内存隔离 劣势:频繁创建销毁有性能开销 Scoped(作用域) 同一请求内共享实例 适用于请求级状态管理(如DbContext) 优势:资源复用,天然事务边界 风险:需防止作用域泄漏到单例中 Singleton(单例) 全局共享唯一实例 适用于配置、缓存等共享资源 优势:性能最佳,全局共享 风险:需处理线程安全问题 选择建议 优先使用Scoped,无状态用Transient

2025-07-05 10:06:03 875 183

原创 Dependency Injection(依赖注入DI)深度解析

本文深入剖析了.NET依赖注入(DI)的核心原理与实现方式。主要内容包括: 核心原理:解释控制反转(IoC)与依赖注入的关系,介绍.NET DI容器的关键组件(IServiceCollection、ServiceDescriptor等) 实现步骤: 服务注册的多种方式(基础注册、泛型注册等) 三种服务解析方法(构造函数注入、方法注入、属性注入) 七种DI模式: 详细对比构造函数注入、方法注入、属性注入的优缺点 介绍高级模式如键控服务(.NET 8+)、延迟解析、选项模式和工厂模式 生命周期管理:分析不同生命

2025-07-05 08:57:05 859 115

原创 .Net配置文件appsetting.json的几种读取方法

.NET配置系统演进与使用指南 本文系统地介绍了.NET配置系统的发展历程和核心技术。从传统的XML配置到现代JSON配置体系,文章详细解析了两种核心配置访问方式: 直接访问模式:通过IConfiguration接口读取配置,支持层级结构访问和类型转换,采用扁平化字典存储,键名转换遵循特定规则。 选项模式(Options Pattern):推荐的最佳实践,通过强类型配置类管理设置,提供IOptions、IOptionsSnapshot和IOptionsMonitor三种接口,分别适用于不同生命周期和热更新需

2025-07-05 08:24:13 1381 103

原创 ABP鸡肋吗?软件开发公司需要在效率与掌控间寻找动态平衡

.NET快速开发框架(如ABP、VoloCore)通过预制模块和代码生成工具显著提升开发效率,缩短周期30%-50%,尤其适合中小型项目和MVP阶段。然而,正规软件公司常面临技术黑箱、性能瓶颈和框架绑定等技术债风险。原生开发则提供深度技术掌控和可持续演进能力,适用于高性能、定制化系统。 理想策略是根据场景混合使用:标准化模块采用框架,核心业务原生开发,并通过分层架构解耦。未来,AI辅助编码可能进一步平衡效率与灵活性。技术决策应动态评估,在工业化效率与自主掌控间寻求最优解。

2025-07-05 08:11:35 1042 91

原创 Vue中对象赋值问题:对象引用被保留,仅部分属性被覆盖

Vue 3响应式数据管理:reactive与ref对比解析 Vue 3的Composition API中,reactive和ref是创建响应式数据的核心工具。本文通过对比分析两者的特性,帮助开发者正确选择使用场景。 核心区别: 数据类型支持: reactive仅适用于对象/数组 ref支持所有数据类型(包括基本类型) 访问方式: reactive直接访问属性 ref需通过.value访问 对象替换: reactive不能直接替换整个对象 ref可以灵活替换整个值 使用建议: 管理复杂对象/表单数据 → 选择

2025-07-04 23:03:58 1759 59

原创 RabbitMQ用法的6种核心模式全面解析

RabbitMQ核心架构与六大应用模式解析 RabbitMQ作为AMQP协议实现,其核心架构包含Broker、Virtual Host、Exchange和Queue等组件,通过Channel复用TCP连接。消息流转采用生产者-Exchange-Queue-消费者的模式,支持持久化和手动ACK。 六大核心用法包括: 简单队列模式 - 基础点对点通信 工作队列模式 - 任务分发与负载均衡,支持QoS控制 发布/订阅模式 - 通过Fanout Exchange实现广播 路由模式 - 使用Direct Exchan

2025-07-04 16:56:06 1622 92

原创 服务器间接口安全问题的全面分析

服务器接口安全解决方案对比 本文分析了六种服务器接口安全方案的核心特点与适用场景: IP白名单:简单高效但易受IP欺骗影响 双向TLS:强身份认证但证书管理复杂 JWT签名:无状态验证但存在令牌泄露风险 OAuth2.0:标准化流程但配置复杂 API网关:集中管控但可能成为性能瓶颈 服务网格:自动安全编排但架构复杂 典型安全威胁包括中间人攻击、凭证泄露等,方案选择需平衡安全性、性能与运维成本。建议高敏感场景采用mTLS+JWT组合,微服务架构优先考虑API网关或服务网格方案。

2025-07-04 16:47:03 1058 45

原创 重新学习Vue中的按键监听和鼠标监听

本文介绍了Vue中处理键盘和鼠标事件的多种方法。键盘事件部分讲解了使用@keyup.enter修饰符、v-on监听、组件事件监听和全局监听等实现方式。鼠标事件部分涵盖了基本事件监听(单击、双击、移动等)、事件修饰符(阻止默认行为、冒泡等)、鼠标按键检测、位置信息获取以及自定义指令的应用。文章还提供了组合鼠标事件实现复杂交互的示例,如拖拽功能。这些方法为Vue开发者提供了全面的事件处理解决方案。

2025-07-03 17:45:09 1119 27

原创 利器:NPM和YARN及其他

> 📌 **趋势**:2025 年新项目中,**pnpm** 和 **Yarn Berry** 占比超过 70%,尤其在大型项目中优势明显。建议根据团队需求和技术栈选择合适的工具。

2025-07-02 16:55:30 1119 51

原创 飞算 JavaAI:我的编程强力助推引擎

飞算JavaAI:Java开发的智能革命 摘要:飞算JavaAI(CalEx-JavaAI)作为专为Java开发者打造的智能助手,显著提升了开发效率。它深度整合Spring Boot、MyBatis等主流框架,提供从需求分析到代码生成的全流程支持,包括:智能拆解需求、自动设计接口、生成表结构、梳理业务逻辑以及一键生成高质量源码。其生成的代码符合Java规范,包含Lombok注解、事务管理、异常处理等最佳实践。安装简单,支持IDEA插件市场一键安装,日常开发中还提供实时技术答疑功能,成为Java开发者不可或缺

2025-07-01 13:07:24 23660 148

原创 基于.Net的Web API 控制器及方法相关注解属性

ASP.NET Core API 开发常用属性总结 本文总结了ASP.NET Core API开发中最常用的属性,主要分为两类: 路由与HTTP方法属性: [ApiController]:启用API特定行为 [Route]:定义URL路由 HTTP方法属性([HttpGet]、[HttpPost]等) [NonAction]:标记非Action方法 参数绑定源属性: [FromBody]:请求体绑定 [FromQuery]:查询字符串绑定 [FromRoute]:路由参数绑定 [FromHeader]:请求

2025-07-01 08:53:29 6220 101

原创 关于.net core开发的实体所有注解详解

本文详细介绍了.NET Core开发中常用的注解属性,涵盖实体类数据验证和Web API行为控制两大方面。在实体类部分,重点讲解了数据验证注解如[Required]、[StringLength]、[Range]、[RegularExpression]等,用于定义字段必填、长度限制、数值范围、格式验证等规则。此外还包括[EmailAddress]、[Phone]、[Url]等专用格式验证,以及[Compare]用于字段值比对。这些注解通过ErrorMessage参数支持自定义错误提示,是构建健壮数据模型的关键

2025-06-30 17:01:54 1281 80

用传统cv算法和卷积神经网络实现手势识别.zip

【国外优秀项目】 神经网络在计算机视觉(Computer Vision, CV)领域扮演着至关重要的角色。计算机视觉旨在使计算机能够“看”和理解图像或视频中的内容,而神经网络,尤其是深度学习模型,已经成为实现这一目标的关键技术。以下是神经网络在计算机视觉中的一些主要应用: 1. **图像分类**: 神经网络可以将图像分类到不同的类别中。例如,一个深度卷积神经网络(CNN)可以识别图像中的对象是猫、狗还是其他动物。 2. **目标检测**: 神经网络可以识别图像中的多个对象,并确定它们的位置和类别。例如,使用R-CNN、Fast R-CNN、Faster R-CNN、YOLO(You Only Look Once)或SSD(Single Shot MultiBox Detector)等算法。 3. **图像分割**: 神经网络可以将图像分割成多个区域,每个区域对应于图像中的一个对象或背景。这包括语义分割(为图像中的每个像素分配类别标签)和实例分割(区分同一类别的不同实例)。 4. **人脸识别**: 神经网络可以识别和验证人脸。这在安全访问控制、社交媒体标签建议等场景中非常有用。 5. **姿态估计**: 神经网络可以估计图像或视频中人物的关节位置,从而推断出他们的身体姿态。 6. **图像生成和增强**: 神经网络可以生成新的图像,或者增强现有图像的质量。例如,使用生成对抗网络(GAN)生成逼真的图像,或者使用超分辨率技术提高图像的分辨率。

2024-06-05

专注优化算法开发,包括以下方面: (1)启发式算法,元启发式算法,群智能优化算法(2)凸优化 (3)多目标优化.zip

【国外优秀项目】 神经网络(Neural Networks)、卷积神经网络(Convolutional Neural Networks, CNNs)和遗传算法(Genetic Algorithms, GAs)是人工智能领域的三种不同技术,它们各自有不同的应用和特点。 1. **神经网络(Neural Networks)**: 神经网络是一种受人脑启发的计算模型,它由大量的节点(或称为“神经元”)组成,这些节点通常分层排列。神经网络通过学习从输入到输出的映射关系来解决各种问题,如分类、回归和模式识别。神经网络的学习过程通常涉及调整节点之间的连接权重,以最小化预测输出与实际输出之间的差异。 2. **卷积神经网络(Convolutional Neural Networks, CNNs)**: CNNs是一种特殊类型的神经网络,专门用于处理具有已知网格状拓扑的数据,如图像。CNNs的核心是卷积层,它通过在输入数据上滑动小的滤波器(或称为“卷积核”)来提取特征。这些特征随后被传递到网络的后续层进行进一步的处理。CNNs在图像识别、视频分析、医学图像处理等领域表现出色。 3. **遗传算法(Genetic Algorithms, GAs)**: GAs是一种模拟自然选择和遗传机制的搜索算法。它们通常用于优化和搜索问题。遗传算法通过模拟生物进化过程中的选择、交叉(杂交)和变异等操作来演化出问题的解决方案。GAs从一个可能解的种群开始,通过迭代过程不断改进解的质量,直到找到满意的解决方案或达到预定的停止条件。 这三种技术可以独立使用,也可以结合使用。例如,神经网络和CNNs通常用于模式识别和预测问题,而遗传算法可以用于优化神经网络的结构或参数。在某些情况下,遗传算法甚至可以用来训练神经网络

2024-06-05

用Paddle框架实现了胶囊网络模型.zip

【国外优秀项目】 神经网络在计算机视觉(Computer Vision, CV)领域扮演着至关重要的角色。计算机视觉旨在使计算机能够“看”和理解图像或视频中的内容,而神经网络,尤其是深度学习模型,已经成为实现这一目标的关键技术。以下是神经网络在计算机视觉中的一些主要应用: 1. **图像分类**: 神经网络可以将图像分类到不同的类别中。例如,一个深度卷积神经网络(CNN)可以识别图像中的对象是猫、狗还是其他动物。 2. **目标检测**: 神经网络可以识别图像中的多个对象,并确定它们的位置和类别。例如,使用R-CNN、Fast R-CNN、Faster R-CNN、YOLO(You Only Look Once)或SSD(Single Shot MultiBox Detector)等算法。 3. **图像分割**: 神经网络可以将图像分割成多个区域,每个区域对应于图像中的一个对象或背景。这包括语义分割(为图像中的每个像素分配类别标签)和实例分割(区分同一类别的不同实例)。 4. **人脸识别**: 神经网络可以识别和验证人脸。这在安全访问控制、社交媒体标签建议等场景中非常有用。 5. **姿态估计**: 神经网络可以估计图像或视频中人物的关节位置,从而推断出他们的身体姿态。 6. **图像生成和增强**: 神经网络可以生成新的图像,或者增强现有图像的质量。例如,使用生成对抗网络(GAN)生成逼真的图像,或者使用超分辨率技术提高图像的分辨率。

2024-06-05

以树莓派的Raspbian系统为基础平台,使用Qt Creator进行界面开发.zip

在树莓派上使用Raspbian系统进行Qt Creator界面开发是一个相对直接的过程。以下是基本步骤: 1. **安装Raspbian**: 确保你的树莓派已经安装了Raspbian操作系统。你可以从树莓派官方网站下载最新版本的Raspbian,并使用NOOBS或通过SD卡烧录器安装到SD卡上。 2. **更新系统**: 在开始之前,确保你的系统是最新的。打开终端并运行以下命令: ```bash sudo apt-get update sudo apt-get upgrade ``` 3. **安装Qt Creator**: Raspbian默认仓库中包含了Qt Creator,你可以通过以下命令安装: ```bash sudo apt-get install qtcreator ``` 这将会安装Qt Creator以及一些必要的工具和库。 4. **配置Qt Creator**: 打开Qt Creator,你可能需要配置一些设置,比如构建套件(Kit)。在“工具”->“选项”->“构建和运行”

2024-06-05

学习神经网络算法.zip

【国外优秀项目】 神经网络,尤其是深度学习模型,已经在多个行业中找到了广泛的应用。以下是一些主要的行业应用示例: 1. **金融服务业**: - 信用评分:使用神经网络来评估贷款申请人的信用风险。 - 欺诈检测:通过分析交易模式来识别信用卡欺诈或洗钱行为。 - 算法交易:利用神经网络预测股票市场走势,进行自动化交易。 2. **医疗保健**: - 疾病诊断:使用深度学习分析医学影像(如X光、CT、MRI)来辅助诊断癌症等疾病。 - 药物发现:通过神经网络预测分子与蛋白质的相互作用,加速新药的研发。 - 个性化治疗:根据患者的遗传信息和临床数据推荐最佳治疗方案。 3. **零售和电子商务**: - 推荐系统:使用神经网络为用户推荐商品。 - 需求预测:预测产品需求,优化库存管理。 - 客户细分:通过分析客户行为数据来进行市场细分和目标营销。 4. **制造业**: - 预测性维护:通过分析机器传感器数据来预测设备故障,减少停机时间。 - 质量控制:使用图像识别技术自动检测产品缺陷。 - 供应链优化:通过神经网络模型优化生产计划和物流。 5. **交通运输**: - 自动驾驶汽车:使用深度学习处理来自车辆传感器的数据,实现环境感知和决策。 - 交通流量管理:通过分析交通数据来优化信号灯控制,减少拥堵。 - 航空业:预测航班延误,优化航线和机组调度。 6. **电信**: - 网络优化:使用神经网络来预测网络流量模式,优化资源分配。 - 客户流失预测:分析客户行为来预测并减少客户流失。 7. **能源**: - 能源消耗预测:预测电力需求,优化发电和分配。 - 风力和太阳能发电预测:通过神经网络模型预测可再生能源的产量。 8. **安全领域**: - 视频监控:使用深度学习进行人脸识别、异常行为检测。 - 网络安全:通过神经网络检测和防御网络

2024-06-05

一个中国象棋程序和一个配套的基于蒙特卡洛算法及神经网络的人工智能(模仿阿尔法狗).zip

【国外优秀项目】 神经网络,尤其是深度学习模型,已经在多个行业中找到了广泛的应用。以下是一些主要的行业应用示例: 1. **金融服务业**: - 信用评分:使用神经网络来评估贷款申请人的信用风险。 - 欺诈检测:通过分析交易模式来识别信用卡欺诈或洗钱行为。 - 算法交易:利用神经网络预测股票市场走势,进行自动化交易。 2. **医疗保健**: - 疾病诊断:使用深度学习分析医学影像(如X光、CT、MRI)来辅助诊断癌症等疾病。 - 药物发现:通过神经网络预测分子与蛋白质的相互作用,加速新药的研发。 - 个性化治疗:根据患者的遗传信息和临床数据推荐最佳治疗方案。 3. **零售和电子商务**: - 推荐系统:使用神经网络为用户推荐商品。 - 需求预测:预测产品需求,优化库存管理。 - 客户细分:通过分析客户行为数据来进行市场细分和目标营销。 4. **制造业**: - 预测性维护:通过分析机器传感器数据来预测设备故障,减少停机时间。 - 质量控制:使用图像识别技术自动检测产品缺陷。 - 供应链优化:通过神经网络模型优化生产计划和物流。 5. **交通运输**: - 自动驾驶汽车:使用深度学习处理来自车辆传感器的数据,实现环境感知和决策。 - 交通流量管理:通过分析交通数据来优化信号灯控制,减少拥堵。 - 航空业:预测航班延误,优化航线和机组调度。 6. **电信**: - 网络优化:使用神经网络来预测网络流量模式,优化资源分配。 - 客户流失预测:分析客户行为来预测并减少客户流失。 7. **能源**: - 能源消耗预测:预测电力需求,优化发电和分配。 - 风力和太阳能发电预测:通过神经网络模型预测可再生能源的产量。 8. **安全领域**: - 视频监控:使用深度学习进行人脸识别、异常行为检测。 - 网络安全:通过神经网络检测和防御网络

2024-06-05

图神经网络相关算法详述及实现.zip

【国外优秀项目】 图神经网络(Graph Neural Networks, GNNs)是一种专门用于处理图结构数据的深度学习模型。图结构数据在现实世界中非常常见,例如社交网络、蛋白质相互作用网络、交通网络等。GNNs在多个行业中都有应用,以下是一些主要的应用领域: 1. **社交网络分析**: - 推荐系统:通过分析用户之间的关系和兴趣来推荐朋友或内容。 - 社区检测:识别社交网络中的社区结构,了解用户群体。 2. **生物信息学**: - 蛋白质结构预测:通过分析蛋白质之间的相互作用来预测其三维结构。 - 药物发现:通过分析药物分子和蛋白质之间的相互作用来发现新药。 3. **交通网络**: - 交通流量预测:通过分析交通网络中的节点和边来预测交通流量。 - 路线规划:优化城市交通路线,减少拥堵。 4. **电网管理**: - 电网优化:通过分析电网中的节点和边来优化电力分配。 - 故障检测:通过分析电网中的异常模式来检测潜在的故障。 5. **金融风控**: - 欺诈检测:通过分析交易网络中的模式来识别欺诈行为。 - 信用评分:通过分析用户在金融网络中的行为来评估信用风险。 6. **知识图谱**: - 问答系统:通过分析知识图谱中的实体和关系来提供准确的答案。 - 语义搜索:通过分析知识图谱中的结构来提供更精确的搜索结果。 7. **推荐系统**: - 协同过滤:通过分析用户和物品之间的图结构来提供个性化推荐。 - 内容推荐:通过分析内容之间的关系来推荐相关内容。 8. **网络安全**: - 入侵检测:通过分析网络流量图中的异常模式来检测潜在的网络攻击。 - 恶意软件分析:通过分析恶意软件的传播网络来识别和防御恶意软件。 图神经网络的应用正在不断扩展,随着技术的进步,它们在更多领域中的应用将会被发掘和实现。由于图结构数据的普遍性,GNNs在处理复杂关系和模式识别方面具有独特的优势,因此在未来的行业应用中具有巨大的潜力。

2024-06-05

学习的一些基本神经网络算法.zip

【国外优秀项目】 神经网络,尤其是深度学习模型,已经在多个行业中找到了广泛的应用。以下是一些主要的行业应用示例: 1. **金融服务业**: - 信用评分:使用神经网络来评估贷款申请人的信用风险。 - 欺诈检测:通过分析交易模式来识别信用卡欺诈或洗钱行为。 - 算法交易:利用神经网络预测股票市场走势,进行自动化交易。 2. **医疗保健**: - 疾病诊断:使用深度学习分析医学影像(如X光、CT、MRI)来辅助诊断癌症等疾病。 - 药物发现:通过神经网络预测分子与蛋白质的相互作用,加速新药的研发。 - 个性化治疗:根据患者的遗传信息和临床数据推荐最佳治疗方案。 3. **零售和电子商务**: - 推荐系统:使用神经网络为用户推荐商品。 - 需求预测:预测产品需求,优化库存管理。 - 客户细分:通过分析客户行为数据来进行市场细分和目标营销。 4. **制造业**: - 预测性维护:通过分析机器传感器数据来预测设备故障,减少停机时间。 - 质量控制:使用图像识别技术自动检测产品缺陷。 - 供应链优化:通过神经网络模型优化生产计划和物流。 5. **交通运输**: - 自动驾驶汽车:使用深度学习处理来自车辆传感器的数据,实现环境感知和决策。 - 交通流量管理:通过分析交通数据来优化信号灯控制,减少拥堵。 - 航空业:预测航班延误,优化航线和机组调度。 6. **电信**: - 网络优化:使用神经网络来预测网络流量模式,优化资源分配。 - 客户流失预测:分析客户行为来预测并减少客户流失。 7. **能源**: - 能源消耗预测:预测电力需求,优化发电和分配。 - 风力和太阳能发电预测:通过神经网络模型预测可再生能源的产量。 8. **安全领域**: - 视频监控:使用深度学习进行人脸识别、异常行为检测。 - 网络安全:通过神经网络检测和防御网络

2024-06-05

实现了深度学习中的一些算法,包括:四种初始化方法.zip

【国外优秀项目】 图神经网络(Graph Neural Networks, GNNs)是一种专门用于处理图结构数据的深度学习模型。图结构数据在现实世界中非常常见,例如社交网络、蛋白质相互作用网络、交通网络等。GNNs在多个行业中都有应用,以下是一些主要的应用领域: 1. **社交网络分析**: - 推荐系统:通过分析用户之间的关系和兴趣来推荐朋友或内容。 - 社区检测:识别社交网络中的社区结构,了解用户群体。 2. **生物信息学**: - 蛋白质结构预测:通过分析蛋白质之间的相互作用来预测其三维结构。 - 药物发现:通过分析药物分子和蛋白质之间的相互作用来发现新药。 3. **交通网络**: - 交通流量预测:通过分析交通网络中的节点和边来预测交通流量。 - 路线规划:优化城市交通路线,减少拥堵。 4. **电网管理**: - 电网优化:通过分析电网中的节点和边来优化电力分配。 - 故障检测:通过分析电网中的异常模式来检测潜在的故障。 5. **金融风控**: - 欺诈检测:通过分析交易网络中的模式来识别欺诈行为。 - 信用评分:通过分析用户在金融网络中的行为来评估信用风险。 6. **知识图谱**: - 问答系统:通过分析知识图谱中的实体和关系来提供准确的答案。 - 语义搜索:通过分析知识图谱中的结构来提供更精确的搜索结果。 7. **推荐系统**: - 协同过滤:通过分析用户和物品之间的图结构来提供个性化推荐。 - 内容推荐:通过分析内容之间的关系来推荐相关内容。 8. **网络安全**: - 入侵检测:通过分析网络流量图中的异常模式来检测潜在的网络攻击。 - 恶意软件分析:通过分析恶意软件的传播网络来识别和防御恶意软件。 图神经网络的应用正在不断扩展,随着技术的进步,它们在更多领域中的应用将会被发掘和实现。由于图结构数据的普遍性,GNNs在处理复杂关系和模式识别方面具有独特的优势,因此在未来的行业应用中具有巨大的潜力。

2024-06-05

使用机器学习对城市房价进行预估.zip

【国外优秀项目】 图神经网络(Graph Neural Networks, GNNs)是一种专门用于处理图结构数据的深度学习模型。图结构数据在现实世界中非常常见,例如社交网络、蛋白质相互作用网络、交通网络等。GNNs在多个行业中都有应用,以下是一些主要的应用领域: 1. **社交网络分析**: - 推荐系统:通过分析用户之间的关系和兴趣来推荐朋友或内容。 - 社区检测:识别社交网络中的社区结构,了解用户群体。 2. **生物信息学**: - 蛋白质结构预测:通过分析蛋白质之间的相互作用来预测其三维结构。 - 药物发现:通过分析药物分子和蛋白质之间的相互作用来发现新药。 3. **交通网络**: - 交通流量预测:通过分析交通网络中的节点和边来预测交通流量。 - 路线规划:优化城市交通路线,减少拥堵。 4. **电网管理**: - 电网优化:通过分析电网中的节点和边来优化电力分配。 - 故障检测:通过分析电网中的异常模式来检测潜在的故障。 5. **金融风控**: - 欺诈检测:通过分析交易网络中的模式来识别欺诈行为。 - 信用评分:通过分析用户在金融网络中的行为来评估信用风险。 6. **知识图谱**: - 问答系统:通过分析知识图谱中的实体和关系来提供准确的答案。 - 语义搜索:通过分析知识图谱中的结构来提供更精确的搜索结果。 7. **推荐系统**: - 协同过滤:通过分析用户和物品之间的图结构来提供个性化推荐。 - 内容推荐:通过分析内容之间的关系来推荐相关内容。 8. **网络安全**: - 入侵检测:通过分析网络流量图中的异常模式来检测潜在的网络攻击。 - 恶意软件分析:通过分析恶意软件的传播网络来识别和防御恶意软件。 图神经网络的应用正在不断扩展,随着技术的进步,它们在更多领域中的应用将会被发掘和实现。由于图结构数据的普遍性,GNNs在处理复杂关系和模式识别方面具有独特的优势,因此在未来的行业应用中具有巨大的潜力。

2024-06-05

图神经网络各个算法.zip

【国外优秀项目】 图神经网络(Graph Neural Networks, GNNs)是一种专门用于处理图结构数据的深度学习模型。图结构数据在现实世界中非常常见,例如社交网络、蛋白质相互作用网络、交通网络等。GNNs在多个行业中都有应用,以下是一些主要的应用领域: 1. **社交网络分析**: - 推荐系统:通过分析用户之间的关系和兴趣来推荐朋友或内容。 - 社区检测:识别社交网络中的社区结构,了解用户群体。 2. **生物信息学**: - 蛋白质结构预测:通过分析蛋白质之间的相互作用来预测其三维结构。 - 药物发现:通过分析药物分子和蛋白质之间的相互作用来发现新药。 3. **交通网络**: - 交通流量预测:通过分析交通网络中的节点和边来预测交通流量。 - 路线规划:优化城市交通路线,减少拥堵。 4. **电网管理**: - 电网优化:通过分析电网中的节点和边来优化电力分配。 - 故障检测:通过分析电网中的异常模式来检测潜在的故障。 5. **金融风控**: - 欺诈检测:通过分析交易网络中的模式来识别欺诈行为。 - 信用评分:通过分析用户在金融网络中的行为来评估信用风险。 6. **知识图谱**: - 问答系统:通过分析知识图谱中的实体和关系来提供准确的答案。 - 语义搜索:通过分析知识图谱中的结构来提供更精确的搜索结果。 7. **推荐系统**: - 协同过滤:通过分析用户和物品之间的图结构来提供个性化推荐。 - 内容推荐:通过分析内容之间的关系来推荐相关内容。 8. **网络安全**: - 入侵检测:通过分析网络流量图中的异常模式来检测潜在的网络攻击。 - 恶意软件分析:通过分析恶意软件的传播网络来识别和防御恶意软件。 图神经网络的应用正在不断扩展,随着技术的进步,它们在更多领域中的应用将会被发掘和实现。由于图结构数据的普遍性,GNNs在处理复杂关系和模式识别方面具有独特的优势,因此在未来的行业应用中具有巨大的潜力。

2024-06-05

自动驾驶AI小车,基于遗传算法优化神经网络.zip

【国外优秀项目】 神经网络(Neural Networks)、卷积神经网络(Convolutional Neural Networks, CNNs)和遗传算法(Genetic Algorithms, GAs)是人工智能领域的三种不同技术,它们各自有不同的应用和特点。 1. **神经网络(Neural Networks)**: 神经网络是一种受人脑启发的计算模型,它由大量的节点(或称为“神经元”)组成,这些节点通常分层排列。神经网络通过学习从输入到输出的映射关系来解决各种问题,如分类、回归和模式识别。神经网络的学习过程通常涉及调整节点之间的连接权重,以最小化预测输出与实际输出之间的差异。 2. **卷积神经网络(Convolutional Neural Networks, CNNs)**: CNNs是一种特殊类型的神经网络,专门用于处理具有已知网格状拓扑的数据,如图像。CNNs的核心是卷积层,它通过在输入数据上滑动小的滤波器(或称为“卷积核”)来提取特征。这些特征随后被传递到网络的后续层进行进一步的处理。CNNs在图像识别、视频分析、医学图像处理等领域表现出色。 3. **遗传算法(Genetic Algorithms, GAs)**: GAs是一种模拟自然选择和遗传机制的搜索算法。它们通常用于优化和搜索问题。遗传算法通过模拟生物进化过程中的选择、交叉(杂交)和变异等操作来演化出问题的解决方案。GAs从一个可能解的种群开始,通过迭代过程不断改进解的质量,直到找到满意的解决方案或达到预定的停止条件。 这三种技术可以独立使用,也可以结合使用。例如,神经网络和CNNs通常用于模式识别和预测问题,而遗传算法可以用于优化神经网络的结构或参数。在某些情况下,遗传算法甚至可以用来训练神经网络

2024-06-05

用BP算法实现神经网络.zip

【国外优秀项目】 神经网络在计算机视觉(Computer Vision, CV)领域扮演着至关重要的角色。计算机视觉旨在使计算机能够“看”和理解图像或视频中的内容,而神经网络,尤其是深度学习模型,已经成为实现这一目标的关键技术。以下是神经网络在计算机视觉中的一些主要应用: 1. **图像分类**: 神经网络可以将图像分类到不同的类别中。例如,一个深度卷积神经网络(CNN)可以识别图像中的对象是猫、狗还是其他动物。 2. **目标检测**: 神经网络可以识别图像中的多个对象,并确定它们的位置和类别。例如,使用R-CNN、Fast R-CNN、Faster R-CNN、YOLO(You Only Look Once)或SSD(Single Shot MultiBox Detector)等算法。 3. **图像分割**: 神经网络可以将图像分割成多个区域,每个区域对应于图像中的一个对象或背景。这包括语义分割(为图像中的每个像素分配类别标签)和实例分割(区分同一类别的不同实例)。 4. **人脸识别**: 神经网络可以识别和验证人脸。这在安全访问控制、社交媒体标签建议等场景中非常有用。 5. **姿态估计**: 神经网络可以估计图像或视频中人物的关节位置,从而推断出他们的身体姿态。 6. **图像生成和增强**: 神经网络可以生成新的图像,或者增强现有图像的质量。例如,使用生成对抗网络(GAN)生成逼真的图像,或者使用超分辨率技术提高图像的分辨率。

2024-06-05

用logistic回归,SVM,神经网络实现分类算法.zip

【国外优秀项目】 神经网络在计算机视觉(Computer Vision, CV)领域扮演着至关重要的角色。计算机视觉旨在使计算机能够“看”和理解图像或视频中的内容,而神经网络,尤其是深度学习模型,已经成为实现这一目标的关键技术。以下是神经网络在计算机视觉中的一些主要应用: 1. **图像分类**: 神经网络可以将图像分类到不同的类别中。例如,一个深度卷积神经网络(CNN)可以识别图像中的对象是猫、狗还是其他动物。 2. **目标检测**: 神经网络可以识别图像中的多个对象,并确定它们的位置和类别。例如,使用R-CNN、Fast R-CNN、Faster R-CNN、YOLO(You Only Look Once)或SSD(Single Shot MultiBox Detector)等算法。 3. **图像分割**: 神经网络可以将图像分割成多个区域,每个区域对应于图像中的一个对象或背景。这包括语义分割(为图像中的每个像素分配类别标签)和实例分割(区分同一类别的不同实例)。 4. **人脸识别**: 神经网络可以识别和验证人脸。这在安全访问控制、社交媒体标签建议等场景中非常有用。 5. **姿态估计**: 神经网络可以估计图像或视频中人物的关节位置,从而推断出他们的身体姿态。 6. **图像生成和增强**: 神经网络可以生成新的图像,或者增强现有图像的质量。例如,使用生成对抗网络(GAN)生成逼真的图像,或者使用超分辨率技术提高图像的分辨率。

2024-06-05

一个蒙特卡洛树搜索算法实现的五子棋 AI+现可用神经网络训练模型。.zip

【国外优秀项目】 神经网络,尤其是深度学习模型,已经在多个行业中找到了广泛的应用。以下是一些主要的行业应用示例: 1. **金融服务业**: - 信用评分:使用神经网络来评估贷款申请人的信用风险。 - 欺诈检测:通过分析交易模式来识别信用卡欺诈或洗钱行为。 - 算法交易:利用神经网络预测股票市场走势,进行自动化交易。 2. **医疗保健**: - 疾病诊断:使用深度学习分析医学影像(如X光、CT、MRI)来辅助诊断癌症等疾病。 - 药物发现:通过神经网络预测分子与蛋白质的相互作用,加速新药的研发。 - 个性化治疗:根据患者的遗传信息和临床数据推荐最佳治疗方案。 3. **零售和电子商务**: - 推荐系统:使用神经网络为用户推荐商品。 - 需求预测:预测产品需求,优化库存管理。 - 客户细分:通过分析客户行为数据来进行市场细分和目标营销。 4. **制造业**: - 预测性维护:通过分析机器传感器数据来预测设备故障,减少停机时间。 - 质量控制:使用图像识别技术自动检测产品缺陷。 - 供应链优化:通过神经网络模型优化生产计划和物流。 5. **交通运输**: - 自动驾驶汽车:使用深度学习处理来自车辆传感器的数据,实现环境感知和决策。 - 交通流量管理:通过分析交通数据来优化信号灯控制,减少拥堵。 - 航空业:预测航班延误,优化航线和机组调度。 6. **电信**: - 网络优化:使用神经网络来预测网络流量模式,优化资源分配。 - 客户流失预测:分析客户行为来预测并减少客户流失。 7. **能源**: - 能源消耗预测:预测电力需求,优化发电和分配。 - 风力和太阳能发电预测:通过神经网络模型预测可再生能源的产量。 8. **安全领域**: - 视频监控:使用深度学习进行人脸识别、异常行为检测。 - 网络安全:通过神经网络检测和防御网络

2024-06-05

使用神经网络+ 遗传算法实现机器人路径规划.zip

【国外优秀项目】 图神经网络(Graph Neural Networks, GNNs)是一种专门用于处理图结构数据的深度学习模型。图结构数据在现实世界中非常常见,例如社交网络、蛋白质相互作用网络、交通网络等。GNNs在多个行业中都有应用,以下是一些主要的应用领域: 1. **社交网络分析**: - 推荐系统:通过分析用户之间的关系和兴趣来推荐朋友或内容。 - 社区检测:识别社交网络中的社区结构,了解用户群体。 2. **生物信息学**: - 蛋白质结构预测:通过分析蛋白质之间的相互作用来预测其三维结构。 - 药物发现:通过分析药物分子和蛋白质之间的相互作用来发现新药。 3. **交通网络**: - 交通流量预测:通过分析交通网络中的节点和边来预测交通流量。 - 路线规划:优化城市交通路线,减少拥堵。 4. **电网管理**: - 电网优化:通过分析电网中的节点和边来优化电力分配。 - 故障检测:通过分析电网中的异常模式来检测潜在的故障。 5. **金融风控**: - 欺诈检测:通过分析交易网络中的模式来识别欺诈行为。 - 信用评分:通过分析用户在金融网络中的行为来评估信用风险。 6. **知识图谱**: - 问答系统:通过分析知识图谱中的实体和关系来提供准确的答案。 - 语义搜索:通过分析知识图谱中的结构来提供更精确的搜索结果。 7. **推荐系统**: - 协同过滤:通过分析用户和物品之间的图结构来提供个性化推荐。 - 内容推荐:通过分析内容之间的关系来推荐相关内容。 8. **网络安全**: - 入侵检测:通过分析网络流量图中的异常模式来检测潜在的网络攻击。 - 恶意软件分析:通过分析恶意软件的传播网络来识别和防御恶意软件。 图神经网络的应用正在不断扩展,随着技术的进步,它们在更多领域中的应用将会被发掘和实现。由于图结构数据的普遍性,GNNs在处理复杂关系和模式识别方面具有独特的优势,因此在未来的行业应用中具有巨大的潜力。

2024-06-05

神经网络入门 实现测评针对分类问题的攻击 防御算法.zip

【国外优秀项目】 神经网络,尤其是深度学习模型,已经在多个行业中找到了广泛的应用。以下是一些主要的行业应用示例: 1. **金融服务业**: - 信用评分:使用神经网络来评估贷款申请人的信用风险。 - 欺诈检测:通过分析交易模式来识别信用卡欺诈或洗钱行为。 - 算法交易:利用神经网络预测股票市场走势,进行自动化交易。 2. **医疗保健**: - 疾病诊断:使用深度学习分析医学影像(如X光、CT、MRI)来辅助诊断癌症等疾病。 - 药物发现:通过神经网络预测分子与蛋白质的相互作用,加速新药的研发。 - 个性化治疗:根据患者的遗传信息和临床数据推荐最佳治疗方案。 3. **零售和电子商务**: - 推荐系统:使用神经网络为用户推荐商品。 - 需求预测:预测产品需求,优化库存管理。 - 客户细分:通过分析客户行为数据来进行市场细分和目标营销。 4. **制造业**: - 预测性维护:通过分析机器传感器数据来预测设备故障,减少停机时间。 - 质量控制:使用图像识别技术自动检测产品缺陷。 - 供应链优化:通过神经网络模型优化生产计划和物流。 5. **交通运输**: - 自动驾驶汽车:使用深度学习处理来自车辆传感器的数据,实现环境感知和决策。 - 交通流量管理:通过分析交通数据来优化信号灯控制,减少拥堵。 - 航空业:预测航班延误,优化航线和机组调度。 6. **电信**: - 网络优化:使用神经网络来预测网络流量模式,优化资源分配。 - 客户流失预测:分析客户行为来预测并减少客户流失。 7. **能源**: - 能源消耗预测:预测电力需求,优化发电和分配。 - 风力和太阳能发电预测:通过神经网络模型预测可再生能源的产量。 8. **安全领域**: - 视频监控:使用深度学习进行人脸识别、异常行为检测。 - 网络安全:通过神经网络检测和防御网络

2024-06-05

在MATLAB上实现车牌识别的程序,识别算法有两种,分别为神经网络和模板匹配.zip

【国外优秀项目】 神经网络(Neural Networks)、卷积神经网络(Convolutional Neural Networks, CNNs)和遗传算法(Genetic Algorithms, GAs)是人工智能领域的三种不同技术,它们各自有不同的应用和特点。 1. **神经网络(Neural Networks)**: 神经网络是一种受人脑启发的计算模型,它由大量的节点(或称为“神经元”)组成,这些节点通常分层排列。神经网络通过学习从输入到输出的映射关系来解决各种问题,如分类、回归和模式识别。神经网络的学习过程通常涉及调整节点之间的连接权重,以最小化预测输出与实际输出之间的差异。 2. **卷积神经网络(Convolutional Neural Networks, CNNs)**: CNNs是一种特殊类型的神经网络,专门用于处理具有已知网格状拓扑的数据,如图像。CNNs的核心是卷积层,它通过在输入数据上滑动小的滤波器(或称为“卷积核”)来提取特征。这些特征随后被传递到网络的后续层进行进一步的处理。CNNs在图像识别、视频分析、医学图像处理等领域表现出色。 3. **遗传算法(Genetic Algorithms, GAs)**: GAs是一种模拟自然选择和遗传机制的搜索算法。它们通常用于优化和搜索问题。遗传算法通过模拟生物进化过程中的选择、交叉(杂交)和变异等操作来演化出问题的解决方案。GAs从一个可能解的种群开始,通过迭代过程不断改进解的质量,直到找到满意的解决方案或达到预定的停止条件。 这三种技术可以独立使用,也可以结合使用。例如,神经网络和CNNs通常用于模式识别和预测问题,而遗传算法可以用于优化神经网络的结构或参数。在某些情况下,遗传算法甚至可以用来训练神经网络

2024-06-05

梯度下降算法的神经网络例子.zip

【国外优秀项目】 图神经网络(Graph Neural Networks, GNNs)是一种专门用于处理图结构数据的深度学习模型。图结构数据在现实世界中非常常见,例如社交网络、蛋白质相互作用网络、交通网络等。GNNs在多个行业中都有应用,以下是一些主要的应用领域: 1. **社交网络分析**: - 推荐系统:通过分析用户之间的关系和兴趣来推荐朋友或内容。 - 社区检测:识别社交网络中的社区结构,了解用户群体。 2. **生物信息学**: - 蛋白质结构预测:通过分析蛋白质之间的相互作用来预测其三维结构。 - 药物发现:通过分析药物分子和蛋白质之间的相互作用来发现新药。 3. **交通网络**: - 交通流量预测:通过分析交通网络中的节点和边来预测交通流量。 - 路线规划:优化城市交通路线,减少拥堵。 4. **电网管理**: - 电网优化:通过分析电网中的节点和边来优化电力分配。 - 故障检测:通过分析电网中的异常模式来检测潜在的故障。 5. **金融风控**: - 欺诈检测:通过分析交易网络中的模式来识别欺诈行为。 - 信用评分:通过分析用户在金融网络中的行为来评估信用风险。 6. **知识图谱**: - 问答系统:通过分析知识图谱中的实体和关系来提供准确的答案。 - 语义搜索:通过分析知识图谱中的结构来提供更精确的搜索结果。 7. **推荐系统**: - 协同过滤:通过分析用户和物品之间的图结构来提供个性化推荐。 - 内容推荐:通过分析内容之间的关系来推荐相关内容。 8. **网络安全**: - 入侵检测:通过分析网络流量图中的异常模式来检测潜在的网络攻击。 - 恶意软件分析:通过分析恶意软件的传播网络来识别和防御恶意软件。 图神经网络的应用正在不断扩展,随着技术的进步,它们在更多领域中的应用将会被发掘和实现。由于图结构数据的普遍性,GNNs在处理复杂关系和模式识别方面具有独特的优势,因此在未来的行业应用中具有巨大的潜力。

2024-06-05

使用 Django 框架搭建学习平台,实现KNN、ID3、C4.5、SVM、朴素贝叶斯、BP神经网络等算法及流程管理.zip

【国外优秀项目】 图神经网络(Graph Neural Networks, GNNs)是一种专门用于处理图结构数据的深度学习模型。图结构数据在现实世界中非常常见,例如社交网络、蛋白质相互作用网络、交通网络等。GNNs在多个行业中都有应用,以下是一些主要的应用领域: 1. **社交网络分析**: - 推荐系统:通过分析用户之间的关系和兴趣来推荐朋友或内容。 - 社区检测:识别社交网络中的社区结构,了解用户群体。 2. **生物信息学**: - 蛋白质结构预测:通过分析蛋白质之间的相互作用来预测其三维结构。 - 药物发现:通过分析药物分子和蛋白质之间的相互作用来发现新药。 3. **交通网络**: - 交通流量预测:通过分析交通网络中的节点和边来预测交通流量。 - 路线规划:优化城市交通路线,减少拥堵。 4. **电网管理**: - 电网优化:通过分析电网中的节点和边来优化电力分配。 - 故障检测:通过分析电网中的异常模式来检测潜在的故障。 5. **金融风控**: - 欺诈检测:通过分析交易网络中的模式来识别欺诈行为。 - 信用评分:通过分析用户在金融网络中的行为来评估信用风险。 6. **知识图谱**: - 问答系统:通过分析知识图谱中的实体和关系来提供准确的答案。 - 语义搜索:通过分析知识图谱中的结构来提供更精确的搜索结果。 7. **推荐系统**: - 协同过滤:通过分析用户和物品之间的图结构来提供个性化推荐。 - 内容推荐:通过分析内容之间的关系来推荐相关内容。 8. **网络安全**: - 入侵检测:通过分析网络流量图中的异常模式来检测潜在的网络攻击。 - 恶意软件分析:通过分析恶意软件的传播网络来识别和防御恶意软件。 图神经网络的应用正在不断扩展,随着技术的进步,它们在更多领域中的应用将会被发掘和实现。由于图结构数据的普遍性,GNNs在处理复杂关系和模式识别方面具有独特的优势,因此在未来的行业应用中具有巨大的潜力。

2024-06-05

.net core Webapi代码生成工具(自动连接数据库)

另外,我这里有漂亮的自动生成脚本。我也可以教你怎么用。

2025-02-07

ar家具购物平台,个人毕业设计.zip

【优秀毕设项目】:主题见资源标题

2024-06-05

2019本科毕业设计:基于UNet的遥感图像语义分割.zip

【优秀毕业设计项目】:主题见资源标题。

2024-06-05

2021年毕业设计 (计算机科学与技术专业).zip

【优秀毕设项目】:主题见资源标题

2024-06-05

2021.6毕业设计-基于SSM与Java的电影网站的设计与实现.zip

【优秀毕设项目】:主题见资源标题

2024-06-05

BiShe Project 毕业设计 测井数据采集系统.zip

【优秀毕设项目】:主题见资源标题

2024-06-05

2019年毕业设计-解魔方机器人.zip

【优秀毕业设计项目】:主题见资源标题。

2024-06-05

2019毕业设计,基于android 的测量程序设计.zip

【优秀毕业设计项目】:主题见资源标题。

2024-06-05

针对三维模型检索,并采用卷积神经网络.zip

【国外优秀项目】 神经网络(Neural Networks)、卷积神经网络(Convolutional Neural Networks, CNNs)和遗传算法(Genetic Algorithms, GAs)是人工智能领域的三种不同技术,它们各自有不同的应用和特点。 1. **神经网络(Neural Networks)**: 神经网络是一种受人脑启发的计算模型,它由大量的节点(或称为“神经元”)组成,这些节点通常分层排列。神经网络通过学习从输入到输出的映射关系来解决各种问题,如分类、回归和模式识别。神经网络的学习过程通常涉及调整节点之间的连接权重,以最小化预测输出与实际输出之间的差异。 2. **卷积神经网络(Convolutional Neural Networks, CNNs)**: CNNs是一种特殊类型的神经网络,专门用于处理具有已知网格状拓扑的数据,如图像。CNNs的核心是卷积层,它通过在输入数据上滑动小的滤波器(或称为“卷积核”)来提取特征。这些特征随后被传递到网络的后续层进行进一步的处理。CNNs在图像识别、视频分析、医学图像处理等领域表现出色。 3. **遗传算法(Genetic Algorithms, GAs)**: GAs是一种模拟自然选择和遗传机制的搜索算法。它们通常用于优化和搜索问题。遗传算法通过模拟生物进化过程中的选择、交叉(杂交)和变异等操作来演化出问题的解决方案。GAs从一个可能解的种群开始,通过迭代过程不断改进解的质量,直到找到满意的解决方案或达到预定的停止条件。 这三种技术可以独立使用,也可以结合使用。例如,神经网络和CNNs通常用于模式识别和预测问题,而遗传算法可以用于优化神经网络的结构或参数。在某些情况下,遗传算法甚至可以用来训练神经网络

2024-06-05

2017.8.28毕业设计,VB论坛网站,用到php,mysql,html,css,js,jquery.zip

【优秀毕业设计项目】:主题见资源标题。

2024-06-05

2019年-毕业设计-百度网盘资源搜索引擎网站的设计与实现.zip

【优秀毕业设计项目】:主题见资源标题。

2024-06-05

Chinese Rumor Recognition 本科毕业设计论文-中文谣言检测.zip

【优秀毕设项目】:主题见资源标题

2024-06-05

2017毕业设计:基于android的测量程序设计.zip

【优秀毕业设计项目】:主题见资源标题。

2024-06-05

2018毕业设计,多人房间匹配你画我猜

【优秀毕业设计项目】:主题见资源标题。

2024-06-05

2022毕业设计Vue_SpringBoot.zip

【优秀毕设项目】:主题见资源标题

2024-06-05

1412基于Python卷积神经网络人脸识别驾驶员疲劳检测与预警系统设计毕业源码案例设计.zip

【优秀毕业设计项目】:主题见资源标题。

2024-06-05

2020毕业设计:毕业设计选题系统.zip

【优秀毕业设计项目】:主题见资源标题。

2024-06-05

2016毕业设计_航空订票系统的设计与实现.zip

【优秀毕业设计项目】:主题见资源标题。

2024-06-05

2022 毕业设计,基于 Hadoop 的游戏数据分析系统.zip

【优秀毕设项目】:主题见资源标题

2024-06-05

针对无线信道“指纹”特征建模.zip

【国外优秀项目】 神经网络(Neural Networks)、卷积神经网络(Convolutional Neural Networks, CNNs)和遗传算法(Genetic Algorithms, GAs)是人工智能领域的三种不同技术,它们各自有不同的应用和特点。 1. **神经网络(Neural Networks)**: 神经网络是一种受人脑启发的计算模型,它由大量的节点(或称为“神经元”)组成,这些节点通常分层排列。神经网络通过学习从输入到输出的映射关系来解决各种问题,如分类、回归和模式识别。神经网络的学习过程通常涉及调整节点之间的连接权重,以最小化预测输出与实际输出之间的差异。 2. **卷积神经网络(Convolutional Neural Networks, CNNs)**: CNNs是一种特殊类型的神经网络,专门用于处理具有已知网格状拓扑的数据,如图像。CNNs的核心是卷积层,它通过在输入数据上滑动小的滤波器(或称为“卷积核”)来提取特征。这些特征随后被传递到网络的后续层进行进一步的处理。CNNs在图像识别、视频分析、医学图像处理等领域表现出色。 3. **遗传算法(Genetic Algorithms, GAs)**: GAs是一种模拟自然选择和遗传机制的搜索算法。它们通常用于优化和搜索问题。遗传算法通过模拟生物进化过程中的选择、交叉(杂交)和变异等操作来演化出问题的解决方案。GAs从一个可能解的种群开始,通过迭代过程不断改进解的质量,直到找到满意的解决方案或达到预定的停止条件。 这三种技术可以独立使用,也可以结合使用。例如,神经网络和CNNs通常用于模式识别和预测问题,而遗传算法可以用于优化神经网络的结构或参数。在某些情况下,遗传算法甚至可以用来训练神经网络

2024-06-05

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除