搭建一个自己的智能问答助手

太好了!下面我为你提供一个 结合 RAG + Agent + MCP 的知识助手系统架构图与代码模板,你可以基于它搭建自己的智能问答助手。


🧭 一、系统架构图(RAG + Agent + MCP)

📌 用户提问
     │
     ▼
🧠 Agent(智能体)
   │   ├─ 判断任务类型:问答 / 搜索 / 执行
   │   └─ 规划调用链
     ▼
🔄 MCP(能力调度平台)
   ├─ 检索能力(RAG)
   ├─ 数据处理能力(Tool)
   └─ 外部API/插件调用
     ▼
📚 RAG模块(知识增强)
   ├─ 文本向量化(Embedding)
   ├─ 向量数据库(FAISS / Chroma)
   └─ 检索相关内容
     ▼
📦 LLM 生成回答
     ▼
📤 返回用户

🧰 二、代码实操模板(基于 LangChain + FAISS)

我们将构建一个 知识问答助手,能读入文档,构建向量库,并具备工具调用能力和智能代理行为。


✅ 第1步:安装环境

pip install langchain openai faiss-cpu tiktoken unstructured sentence-transformers

✅ 第2步:知识文档预处理 + 构建向量库(RAG)

from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS

# 读取文档
loader = PyPDFLoader("your_doc.pdf")
docs = loader.load()

# 分段
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
split_docs = splitter.split_documents(docs)

# 向量化
embedding = OpenAIEmbeddings()
vectorstore = FAISS.from_documents(split_docs, embedding)

# 保存向量库
vectorstore.save_local("rag_vector_db")

✅ 第3步:定义 Agent 工具(MCP能力调度)

from langchain.agents import initialize_agent, Tool
from langchain.chat_models import ChatOpenAI
from langchain.chains import RetrievalQA

# 定义问答链(工具1:知识库问答)
retriever = FAISS.load_local("rag_vector_db", embedding).as_retriever()
qa_chain = RetrievalQA.from_chain_type(llm=ChatOpenAI(model_name="gpt-4"), retriever=retriever)
tool_qa = Tool(name="RAG_Knowledge_QA", func=qa_chain.run, description="回答基于知识库的问题")

# 你可以再添加别的工具,如计算器、网页搜索等
tool_list = [tool_qa]

# 初始化 Agent
agent_executor = initialize_agent(
    tools=tool_list,
    llm=ChatOpenAI(model_name="gpt-4"),
    agent="zero-shot-react-description",
    verbose=True
)

✅ 第4步:运行问答助手(Agent 调用 MCP + RAG)

query = "请告诉我这份文档中主要的产品分类和销售策略?"
response = agent_executor.run(query)
print(response)

🖼️ 三、架构组合说明

模块说明
🧠 Agent识别任务目标,调用合适工具
🔄 MCP将任务分发给合适模块(RAG、API等)
📚 RAG将知识库内容向量化,检索相关信息
📦 LLM接收上下文与背景知识,生成自然语言回答
🧑‍💻 用户只需输入自然语言,获得完整回答

🎁 四、进阶建议(可选增强)

目标技术方案
数据库问答加接 SQL 数据库工具
网页搜索增强SerpAPI / Tavily 工具调用
多模型选择添加 Llama3 或 Claude 模型能力
多轮记忆对话引入 LangChain ConversationBufferMemory

🚀 五、快速部署方式

  • 本地运行:用上面模板 + Streamlit 接口即可部署

  • 网页端部署:部署到 Gradio / Vercel / Render

  • Docker:可打包为容器部署在私有云或内网

### 构建智能问答系统的要素 构建智能问答系统涉及多个方面,包括但不限于创建特定的AI问答机器人应用、准备知识库以及设定提示词等内容。为了使机器人能够有效地工作,需要为其提供一个详尽的知识库作为背景信息源[^1]。 对于开发环境的选择,Python是一种流行的语言选项,它允许开发者编写简洁而高效的代码来实现聊天机器人的逻辑处理部分。通过合适的API接口设计,还可以进一步增强聊天机器人的功能性和服务范围[^2]。 当涉及到语言生成时,则面临着诸如预定义模板建设和维护等问题。这通常意味着要投入大量资源去建立高质量的问答语料库或是复杂度更高的知识图谱结构。尽管目前尚无完全成熟的解决方案可供借鉴,但这并不妨碍个人或团队尝试利用现有工具和技术来进行创新实践[^3]。 #### 创建简单的聊天机器人实例 下面是一个简易版基于Python编写的聊天机器人框架: ```python import random def get_response(user_input): responses = ["那很有趣!", "告诉我更多细节吧.", "听起来不错."] return random.choice(responses) while True: user_message = input("您:") if user_message.lower() in ['bye', 'exit']: break response = get_response(user_message) print(f"机器人:{response}") ``` 此段脚本展示了如何接收用户的输入并给出随机回复。当然,在实际项目中还需要考虑更复杂的对话管理和自然语言理解能力[^4]。 另外,如果目标是制作具有地理文化特色的导游型聊天机器人,那么可以预先准备好关于景点的信息集合,比如这样一段展示杭州著名地标位置的数据片段[^5]: ```python d={ "西湖": "位于浙江省杭州市西湖区龙井路1号", ... } print(d.keys()) ``` 以上就是一些基础概念和入门指南,希望可以帮助到想要探索这一领域的朋友。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值