题目
给出一个n*m的网格,要放k个东西,当一个地方放下后,他上下左右都不可放,问方案数。
输入描述:
输入的第一行包含一个整数T,表示指定测试用例的数量。
每个测试用例前面都有一个空白行。
每个测试用例由包含三个整数M,N和K的一行组成。
输出描述:
对于每个测试用例输出一行,表示答案对420047取模的结果。
输入
3
2 3 2
2 4 4
2 5 1
输出
8
2
10
备注:
T≤10,N*M<=80, K<=4。
分析
估计是到状压DP,鉴于数据十分小,可写DFS,若此处不可放,直接向后找,若可放,分两种情况:放或不放。时间:78ms。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
int n,m,k,mod=420047,al[90][90],T;
using namespace std;
int DP(int a,int b,int c){
if(c==k) return 1;
if(a>n) return 0;
int ans1=0,ans2=0;
if(al[a][b]){
if(b==m) return DP(a+1,1,c);
return DP(a,b+1,c);
}
al[a-1][b]++,al[a+1][b]++,al[a][b+1]++,al[a][b-1]++;
if(b==m) ans1=DP(a+1,1,c+1)%mod;
else ans1=DP(a,b+1,c+1)%mod;
al[a-1][b]--,al[a+1][b]--,al[a][b+1]--,al[a][b-1]--;
if(b==m) ans2=DP(a+1,1,c)%mod;
else ans2=DP(a,b+1,c)%mod;
return (ans1+ans2)%mod;
}
int main(){
scanf("%d",&T);
while(T--){
memset(al,0,sizeof(al));
scanf("%d%d%d",&n,&m,&k);
printf("%d\n",DP(1,1,0));
}
return 0;
}