sky77
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
38、数值方法在偏微分方程求解中的应用与比较
本文介绍了两种数值方法在偏微分方程求解中的应用与比较。Chebyshev-Multiple-Endpoints配点法在高阶微分方程边值问题中表现出改善微分矩阵条件数和提高近似精度的优势,而间断残差分布法则在时间相关的双曲型偏微分方程求解中提供了空间间断表示和额外的灵活性。通过具体问题的数值结果和对比分析,文章探讨了不同方法的适用场景及局限性,并为实际应用中的方法选择提供了建议。原创 2025-08-15 10:47:08 · 17 阅读 · 0 评论 -
37、流体 - 结构相互作用问题的全欧拉模型及多端点切比雪夫配点法
本文介绍了一种用于解决流体-结构相互作用问题的全欧拉模型,并提出了一种新的多端点切比雪夫配点法以高效求解高阶微分方程。全欧拉模型结合了扩散界面和表面张力项,并采用伽辽金/最小二乘法和流线迎风/彼得罗夫-伽辽金格式进行离散化,配合完全隐式牛顿法实现耦合系统的线性化。多端点切比雪夫配点法通过引入多端点配点和新的边界技术,显著改善了传统伪谱方法在处理高阶、高维问题时的条件数、收敛速度和精度问题。数值实验表明,该方法在一维六阶线性问题、二维双调和方程以及非线性冯·卡门板方程等实例中均表现出优越的稳定性和精度。该方法原创 2025-08-14 12:53:27 · 14 阅读 · 0 评论 -
36、流体 - 结构相互作用问题的全欧拉模型研究
本文研究了基于相场函数的流体-结构相互作用(FSI)问题的全欧拉模型。通过引入描述流体与结构分布的相场函数,建立了混合速度场、密度、粘度和应力张量等物理量的数学表达式,并结合Allen-Cahn型相场方程及表面张力效应,构建了完整的控制方程体系。数值求解方面,采用了全隐式牛顿法和Taylor-Hood混合有限元方法,结合二阶时间离散和稳定化技术,有效处理了非线性与对流主导问题。同时,通过流函数法模拟了二维流场的流线分布,直观展示了流体运动特性。数值实验验证了模型与方法的有效性,成功捕捉到结构旋转、变形及流场原创 2025-08-13 14:40:44 · 16 阅读 · 0 评论 -
35、波导中障碍物重建与流固耦合问题研究
本博文围绕波导中障碍物重建与流固耦合问题展开研究。在障碍物重建部分,探讨了基于格林函数和散射场的直接问题建模,以及利用线性采样方法和傅里叶展开方法解决逆问题的策略,并通过数值实验验证了方法的有效性。在流固耦合部分,提出了一种全欧拉模型,结合相场方法和统一速度向量,模拟了流体与固体的相互作用,并基于BDF、GLS和SUPG等数值方法进行了实验验证。研究为复杂波导环境中的障碍物定位和流固耦合工程问题提供了理论支持与解决方案。原创 2025-08-12 12:30:32 · 12 阅读 · 0 评论 -
34、含曲线界面的斯托克斯 - 达西流模拟与波导内障碍物重建
本博文探讨了两个重要的研究课题:含曲线界面的斯托克斯-达西流模拟与波导内障碍物的重建。对于斯托克斯-达西流问题,研究采用非重叠区域分解变分公式和有限元离散化方法,并针对曲线界面提出了相应的数值实现策略。通过多个数值例子验证了方法的收敛性。在波导内障碍物重建方面,采用线性采样方法并结合极限吸收原理和递归加倍技术计算格林函数,提出加速采样程序以提高效率。通过数值实验验证了方法的有效性。这些研究为流体力学、波动理论及相关工程应用提供了重要的数值模拟工具。原创 2025-08-11 12:27:26 · 11 阅读 · 0 评论 -
33、间断伽辽金方法与快速扫描方法在Hamilton - Jacobi方程中的应用
本博客探讨了间断伽辽金(DG)方法和快速扫描方法在求解Hamilton-Jacobi方程中的应用,以及砂浆多尺度方法在处理耦合Stokes和Darcy流问题中的数值策略。详细介绍了DG方法的三种不同形式及其在时间相关和稳态Hamilton-Jacobi方程中的适用性,同时分析了快速扫描方法的高效迭代特性。此外,还研究了在具有弯曲界面和非匹配网格的不规则域中,Stokes和Darcy流耦合问题的数值近似方法。这些方法在复杂几何、高阶精度和计算效率方面表现出色,为相关领域的研究和应用提供了重要的技术支持。原创 2025-08-10 14:09:36 · 12 阅读 · 0 评论 -
32、数值计算方法的多领域应用与分析
本文探讨了多种数值计算方法在科学与工程领域的应用,重点分析了磁流体动力学的混合有限元方法、二维傍轴亥姆霍兹方程的紧凑分裂方案以及哈密顿-雅可比方程的间断伽辽金方法。通过数学模型、稳定性分析和计算示例,展示了这些方法在处理复杂偏微分方程问题中的优势与挑战。同时,文章总结了不同方法的特点,并探讨了其在实际工程问题中的应用与改进方向。原创 2025-08-09 14:33:28 · 7 阅读 · 0 评论 -
31、非侵入式不确定性传播框架与MHD问题的混合有限元方法
本文介绍了一种用于非侵入式不确定性传播的新颖框架,结合多分辨率近似和压缩采样策略,有效捕捉分段光滑的随机响应,并通过自适应重要性采样策略提高收敛速度,且通过Kraichnan-Orszag问题验证了方法的收敛性。同时,提出了一种针对时变不可压缩磁流体动力学(MHD)问题的混合有限元方法,基于H(div)和H(curl)协调的有限元空间,实现了精确的散度约束、能量稳定性和良好的收敛性。通过Couette通道流问题的数值测试验证了该方法的可行性。两种方法分别在不确定性分析和MHD数值模拟中展现了显著优势,并在工原创 2025-08-08 14:36:56 · 12 阅读 · 0 评论 -
30、用于不确定性量化的稀疏多分辨率随机近似方法
本文提出了一种基于稀疏多分辨率多小波展开和压缩采样(CS)的不确定性量化方法。通过结合多小波的局部逼近能力和CS的稀疏信号重建技术,该方法在处理具有尖锐梯度、分叉或不连续性的非光滑随机响应时表现出较高的准确性和效率。同时,引入基于多小波树结构的重要性采样策略,增强了对局部特征的捕捉能力,并通过正交基函数直接计算统计信息。通过对Kraichnan-Orszag问题的数值测试,验证了该方法在非线性系统中的有效性。本方法为复杂物理系统的不确定性传播分析提供了一种有力工具。原创 2025-08-07 13:45:23 · 8 阅读 · 0 评论 -
29、大气建模中的CFV方法与Leray-α模型灵敏度计算
本博客探讨了大气建模中的CFV(Central-Upwind Finite Volume)方法与Leray-α模型的灵敏度计算。CFV方法在非静力二维模型中表现出简单高效、高阶精度和正性保持等优势,适用于模拟上升气泡等大气现象。同时,Leray-α模型的灵敏度分析揭示了平均速度对参数α的变化响应,为流体模型的参数优化和可靠性评估提供了依据。研究还对比了不同雷诺数下的灵敏度结果,并提出了未来向三维模型扩展和深入研究的方向。原创 2025-08-06 11:43:38 · 14 阅读 · 0 评论 -
28、偏微分方程数值求解方法与大气数值模拟的中央迎风有限体积法
本文介绍了偏微分方程数值求解和大气数值模拟中的关键方法。在一维PDE领域,讨论了误差估计方案的发展,包括低阶插值(LOI)方案以及BACOLI和BACOLRI的改进,提高了计算效率。在大气数值模拟中,重点介绍了中央迎风有限体积(CFV)方法的应用,特别是在立方球面上的浅水波模型中的实现。通过对比不同重建方法(如WENO5和全二维四阶重建),展示了CFV方法的精度和计算效率。最后,总结了现有研究的成果,并展望了未来的研究方向,包括误差估计方案的优化和方法在二维PDE中的扩展。原创 2025-08-05 09:00:41 · 15 阅读 · 0 评论 -
27、一维抛物型偏微分方程的B样条高斯配置软件综述
本文综述了一维抛物型偏微分方程数值求解中使用的B样条高斯配置软件的发展历程和关键技术。文章详细介绍了从早期固定空间网格结合ODE求解器的PDECOL和EPDCOL,到具备空间自适应和DAE求解器的BACOL和BACOLR,再到基于高效空间误差估计方案的BACOLI和BACOLRI的演进过程。重点讨论了B样条高斯配置方法的基本原理、边界条件处理、时间积分和空间误差控制策略,以及不同软件在计算效率、稳定性和精度方面的特点。此外,文章还提出了未来研究方向,包括改进空间误差估计方法、扩展至多维问题、优化求解器性能以原创 2025-08-04 12:09:35 · 10 阅读 · 0 评论 -
26、用于非均匀通量跳跃移动界面问题的浸入有限元线方法
本文研究了一种用于求解具有非均匀通量跳跃条件的抛物型移动界面问题的浸入有限元(IFE)线方法(Method of Lines, MoL)。通过构造满足界面跳跃条件的线性IFE基函数,并结合固定网格的空间离散化策略,实现了在整个模拟过程中使用固定网格,从而将移动界面问题转化为常微分方程(ODE)系统进行数值求解。文中详细介绍了IFE空间的构建、弱形式的推导以及ODE系统的形成过程,并基于多种ODE求解器(包括隐式中点格式、BDF格式及自适应DIRK格式)进行了数值实验,验证了该方法在L²和H¹范数下的最优收敛原创 2025-08-03 11:01:56 · 8 阅读 · 0 评论 -
25、用于周期性结构色散介质中麦克斯韦方程的均匀化间断伽辽金方法
本文提出了一种用于周期性结构色散介质中时变麦克斯韦方程的均匀化间断伽辽金方法。该方法结合了间断伽辽金(DG)方法的灵活性和均匀化技术的高效性,有效解决了由于周期性微观结构导致的系数高度振荡问题。通过构建单位元胞中的校正函数和全离散均匀化DG格式,得到了问题的近似解,并通过多尺度渐近展开构造了多尺度解。数值实验验证了该方法的有效性和收敛性。未来的研究将拓展其在超材料中的应用并进行严格的误差分析。原创 2025-08-02 12:44:14 · 13 阅读 · 0 评论 -
24、流体模拟与网格生成软件的数值实验与应用
本文介绍了磁流体动力学(MHD)流动的数值实验以及LNG FEM软件的应用。通过两项数值实验验证了IMEX1和IMEX2算法的收敛性和稳定性,其中IMEX1具有一阶收敛性和无条件稳定性,IMEX2具有二阶收敛性并在较大时间步长下保持稳定。同时,详细介绍了LNG FEM软件的功能和使用步骤,该软件用于生成渐变网格并求解椭圆方程,具有模块化、高效性和用户友好等特点,适用于处理具有奇异解的复杂问题。文章展示了这些方法和工具在流体模拟与数值计算领域的重要应用价值。原创 2025-08-01 15:25:40 · 8 阅读 · 0 评论 -
23、非线性滤波与磁流体动力学分区方法研究
本文探讨了非线性滤波在流体模拟中的应用以及磁流体动力学(MHD)小磁雷诺数流动的分区方法稳定性。研究显示,非线性滤波能够有效减少数值和建模误差,提高模型的准确性,而WALE指标在定位涡流粘性方面表现出色。同时,分区方法通过将复杂的MHD耦合问题分解为子问题,提高了求解效率和稳定性。文中还讨论了这些方法在实际工程和科学研究中的应用前景与挑战,并提出了进一步的研究方向。原创 2025-07-31 12:19:37 · 12 阅读 · 0 评论 -
22、组件模态综合与非线性滤波方法在流体流动模拟中的应用
本文探讨了组件模态综合(CMS)和非线性滤波(NLF)方法在流体流动模拟中的应用。CMS方法通过模态分解和后验误差估计,有效降低有限元求解的计算复杂度,适用于具有多个子域的问题;NLF方法基于物理思想和指示函数,能够更准确地模拟高雷诺数下的湍流流动。文章详细介绍了两种方法的数学原理、算法步骤以及相关数值实验,并对比了它们的优势和局限性。此外,还提供了实际应用建议和未来研究方向,如开发更有效的指示函数、多方法结合以及优化自适应策略,以进一步提高流体流动模拟的效率和精度。原创 2025-07-30 13:04:24 · 9 阅读 · 0 评论 -
21、海洋冰盖模型与层流粘性不可压缩流体流动的数值模拟方法
本文探讨了两种重要的数值模拟方法:TNNMG方法在海洋冰盖模型中的应用,以及组件模态综合(CMS)方法在层流粘性不可压缩流体流动模拟中的应用。TNNMG方法展示了其在处理非光滑最小化问题上的高效性和稳定性,而CMS方法则通过模型降阶技术有效降低了计算复杂度,并结合后验误差估计保证了模拟精度。这些方法为相关领域的科学研究提供了强有力的工具。原创 2025-07-29 14:50:00 · 11 阅读 · 0 评论 -
20、莫利元超收敛与海洋冰盖模型的数值模拟
本博文探讨了莫利元在求解双调和方程中的超收敛特性,并通过局部L2投影方法验证了其在H1和H2半范数下的收敛阶提升。此外,博文详细介绍了海洋冰盖模型的构建,包括基于浅冰近似(SIA)和浅架近似(SSA)的数学公式及其变分不等式形式,并讨论了时间与空间离散化策略,结合截断非光滑牛顿多重网格(TNMMG)方法实现高效数值求解,为研究海洋冰盖演化提供了可靠的数值模拟工具。原创 2025-07-28 12:27:45 · 12 阅读 · 0 评论 -
19、粘性弹性流体流动与Morley单元超收敛性的数值研究
本文研究了粘性弹性流体流动的数值模拟方法以及Morley单元在双调和方程中的超收敛性。在流体模拟部分,采用了一阶隐式时间离散和显式松耦合算法,通过数值实验分析了算法的稳定性与误差来源,并探讨了改进策略。在Morley单元研究中,基于与Crouzeix-Raviart单元的等价性,提出后处理算法以实现半阶超收敛性,并进一步探讨了实现全阶超收敛性的可能方法。最后,文章展望了这两项研究在生物医学、工程结构等领域的应用前景。原创 2025-07-27 11:50:04 · 10 阅读 · 0 评论 -
18、广义福克 - 普朗克方程与粘弹性流体流动在移动域中的数值方法
本文系统研究了广义福克-普朗克方程和粘弹性流体流动在移动域中的数值方法。针对广义福克-普朗克方程,介绍了函数空间的奇偶分解、弱形式的推导、解的存在唯一性、问题的重写、Galerkin逼近以及迭代过程等关键内容,并讨论了其数值求解步骤。对于粘弹性流体在移动域中的流动问题,重点探讨了基于Johnson-Segalman模型的控制方程、Arbitrary Lagrangian Eulerian (ALE)方法的变分形式、ALE映射的构造以及时间离散化策略。文章还对两种方法的联系与区别进行了比较,展望了未来可能的研原创 2025-07-26 09:25:44 · 10 阅读 · 0 评论 -
17、数值方法在积分方程与辐射传输方程中的应用
本文介绍了两种数值方法:一种是用于求解第二类Volterra积分方程的Chebyshev谱配置法,具有谱精度和指数收敛性;另一种是用于求解广义Fokker-Planck方程的数值方法,为高度前向峰值生物介质中的辐射传输方程提供了有效近似解。两种方法分别展示了其在科学与工程领域中的重要应用价值,并对未来的研究方向进行了展望。原创 2025-07-25 16:38:19 · 13 阅读 · 0 评论 -
15、不可压缩流模拟中离散质量守恒的实现
本文探讨了在不可压缩流体数值模拟中,不同有限元方法对离散质量守恒的影响。重点分析了Taylor-Hood元素(TH)、grad-div稳定的Taylor-Hood元素(THGD)和Scott-Vogelius元素(SV)的优缺点。通过理论分析和多个数值实验(包括Stokes问题、圆柱绕流和热腔自然对流问题),比较了这些方法在全局和逐点质量守恒、求解精度以及计算效率方面的表现。总结了在不同问题条件下(如压力大小、粘性系数等),如何选择合适的有限元方法以实现更准确和高效的模拟结果。原创 2025-07-23 12:43:34 · 7 阅读 · 0 评论 -
14、二阶拟线性椭圆偏微分方程的双网格 hp - DGFEM方法
本博文研究了基于非线性牛顿求解器单步迭代的双网格 hp 版本间断伽辽金有限元方法(DGFEM),用于求解二阶拟线性椭圆边值问题。文中介绍了数学模型和双网格离散化方法,进行了详细的先验和后验误差分析,并通过数值实验验证了理论结果。结果表明,该方法在 h 和 p 参数下具有良好的收敛性和计算效率,适用于自适应网格细化策略。原创 2025-07-22 09:16:51 · 7 阅读 · 0 评论 -
13、基于 NVIDIA Tesla GPUs 的油藏模拟加速技术
本文探讨了基于NVIDIA Tesla GPUs的油藏模拟加速技术,重点解决大规模油藏模拟中线性系统求解耗时过长的问题。通过开发适用于GPU的稀疏矩阵-向量乘法内核及相关BLAS 1/2子程序,构建了七种Krylov子空间线性求解器,并实现了多种常用预条件器,包括块ILU(0)、块ILUT和受限加性Schwarz预条件器(RAS)。实验以SPE 10问题为基准,结果表明基于GPU的求解器相比纯CPU实现最高可加速约六倍,为大规模油藏模拟提供了高效的计算解决方案。原创 2025-07-21 14:45:10 · 4 阅读 · 0 评论 -
12、细菌生物膜3D模式与最优套期保值策略的关键路径研究
本博文围绕细菌生物膜的3D模式形成机制和最优套期保值策略的关键路径展开研究。在细菌生物膜部分,分析了粘附能对“NSF”模式和同心环模式形成的影响,并通过数值模拟展示了不同参数下的模式变化。在金融领域部分,探讨了最优套期保值策略下关键路径的数学表达式及其约束函数形式,并提出了未来研究方向,包括考虑不同的价格模型及终端风险约束。研究为理解细菌行为和金融风险控制提供了理论支持,并展望了其在医学、工业及金融市场中的应用潜力。原创 2025-07-20 09:08:41 · 8 阅读 · 0 评论 -
11、分数方程高阶格式与细菌生物膜三维模式研究
本博客围绕分数方程的高阶求解格式与细菌生物膜三维模式的数值研究展开。针对分数微分方程,提出了一种高阶逐块求解方法,在理论分析和数值实验中均表现出高精度与稳定性。对于细菌生物膜模式形成,构建了多相流体动力学模型,结合Flory-Huggins自由能与逻辑增长机制,通过三维数值模拟揭示了细菌迁移、相分离及生物量-底物相互作用对模式形成的影响。研究展示了模型在定制化细菌模式设计中的潜力,为生物医学与生物技术应用提供了理论支持。原创 2025-07-19 11:06:44 · 5 阅读 · 0 评论 -
10、数值计算方法在流体与微分方程中的应用
本文探讨了数值计算方法在不可压缩流体流动和常分数阶微分方程中的应用。重点介绍了多尺度Leray模型在Navier-Stokes方程求解中的效率与收敛性,以及一种高阶逐块格式在分数阶微分方程中的高精度求解能力。通过多个数值实验验证了这些方法的优越性,并展望了其在航空航天、海洋工程、物理建模和金融领域等实际问题中的应用潜力。原创 2025-07-18 15:21:46 · 6 阅读 · 0 评论 -
9、电磁与流体模拟中的数值分析与方法
本博客围绕电磁与流体模拟中的数值分析方法展开,重点探讨了麦克斯韦方程在德拜色散介质中的稳定性与色散特性,以及不可压缩粘性流的多尺度勒雷模型数值逼近方法。通过冯·诺伊曼分析和高阶有限差分格式,推导了稳定性条件和数值色散关系,并提出了细网格过滤策略以改善勒雷 - α模型的过度正则化问题。文章还对比了不同数值方法的性能,展望了其在电磁材料设计、流体动力学模拟等领域的应用前景,并指出了未来研究方向,如高阶格式优化与多物理场耦合模拟。原创 2025-07-17 14:34:02 · 7 阅读 · 0 评论 -
8、局部多项式逼近偏差估计与麦克斯韦方程FDTD方法分析
本博客主要探讨了局部多项式逼近的偏差估计与麦克斯韦方程在色散介质中的高阶FDTD方法分析。在信号处理方面,基于Peano核定理和傅里叶分析,对局部多项式逼近的偏差误差进行了深入研究,并分析了不同加权函数下的误差常数,为信号逼近提供了理论支持。在电磁学方面,推导了二维Debye型色散介质中麦克斯韦方程的高阶有限差分时间域(FDTD)方法的稳定性条件和数值色散误差,通过数值示例验证了高阶FDTD方法在精度和稳定性方面的优势。文章还对不同方法进行了比较,并给出了方法选择的建议。原创 2025-07-16 11:27:57 · 10 阅读 · 0 评论 -
7、总变分正则化光流计算及局部多项式逼近偏差估计
本文详细介绍了总变分正则化光流计算和局部多项式逼近偏差估计的理论基础及应用。总变分正则化方法能够更准确地重建流体动力学中的复杂流场结构,特别是在处理海洋数据时表现出色;局部多项式逼近偏差估计则提供了一种优化信号估计的方法,通过偏差-方差权衡提高估计精度。文章展示了两种方法在实际数据中的应用结果,并探讨了参数选择和优化策略。这些方法在流体动力学、信号处理等领域具有广泛的应用前景。原创 2025-07-15 11:19:54 · 5 阅读 · 0 评论 -
6、纳米光学多物理建模与多尺度计算
本文探讨了纳米光学中的多物理建模与多尺度计算方法,重点介绍了麦克斯韦-科恩-沈吕九(Maxwell-KS)系统的构建及其在纳米尺度光学响应中的应用。通过线性响应理论和P矩阵表述,建立了电磁场与电流、电子密度之间的线性耦合系统,并提出了自洽多尺度方法以解决不同空间尺度下的数值计算问题。同时,结合数值示例验证了共振条件,并探讨了求解科恩-沈吕九方程的h-、hp-和r-自适应方法的优势与挑战。最后,总结了线性响应理论、多尺度方法和自适应策略的适用范围,并展望了未来在高阶响应理论、时间传播方法和量子信息处理等方向的原创 2025-07-14 15:37:00 · 11 阅读 · 0 评论 -
5、非线性误差传输的后验误差估计与纳米光学多物理建模计算
本文探讨了非线性误差传输的后验误差估计方法及其在二维浅水方程和一维Burgers方程中的应用,结果显示非线性误差传输在解出现间断时仍能提供合理误差估计。同时,介绍了纳米光学中结合半经典理论和时间相关电流密度泛函理论(TD-CDFT)的多物理建模与多尺度计算方法,有效降低了计算成本,为纳米尺度光学响应研究提供了可行路径。原创 2025-07-13 14:55:50 · 10 阅读 · 0 评论 -
4、并行 hp 自适应有限元方法与后验误差估计的研究与实践
本博文围绕并行 hp 自适应有限元方法与后验误差估计展开研究与实践,重点介绍了在求解偏微分方程时如何结合 h-细化和 hp-细化策略优化网格划分,并通过区域分解算法实现高效的并行求解。此外,博文还探讨了后验误差估计中非线性误差传输的应用,特别是在处理时间相关双曲问题(如无粘 Burgers 方程和浅水波方程)时,非线性误差传输方法相比线性方法在误差估计精度上的显著优势。实验结果验证了这些方法在复杂问题中的有效性和可靠性。原创 2025-07-12 09:16:15 · 12 阅读 · 0 评论 -
3、多尺度 mortar 混合方法与并行 hp 自适应有限元方法解析
本文详细解析了多尺度 mortar 混合方法和并行 hp 自适应有限元方法在数值求解二阶椭圆问题和偏微分方程中的应用。多尺度 mortar 方法通过引入均匀化理论处理椭圆系数的异质性,结合非重叠区域分解实现高效并行计算,在石油工程等实际场景中具有重要意义。而并行 hp 自适应有限元方法结合 hp 自适应算法和区域分解技术,实现快速收敛与大规模并行计算,适用于航空航天等高精度计算领域。文章还对比了两种方法的特点,并展望了它们在未来科学计算中的结合与优化前景。原创 2025-07-11 10:20:29 · 32 阅读 · 0 评论 -
2、异质椭圆问题的多尺度砂浆混合方法
本文研究了用于解决高度异质系数的二阶椭圆问题的多尺度砂浆混合方法。通过引入基于均匀化理论的多尺度砂浆空间,结合区域分解和混合有限元方法,有效提升了计算效率和求解精度。论文从变分形式推导、有限元逼近到数值实验验证,系统展示了该方法的优势,并通过与传统多项式基砂浆空间的对比,验证了多尺度方法在处理异质性问题中的优越性能。原创 2025-07-10 12:58:35 · 23 阅读 · 0 评论 -
1、弹性波多频逆源问题研究
本博文围绕弹性波多频逆源问题展开研究,探讨了逆源问题的背景、理论基础以及重建算法。文章重点分析了多频方法的优势,包括其在源唯一性确定和实际应用中的潜力。此外,还介绍了两种主要的重建算法:基于傅里叶变换的方法和基于伴随问题的方法,并对其优缺点进行了比较。最后,文章展望了未来的研究方向,包括理论完善、算法优化以及与先进技术的结合。原创 2025-07-09 15:40:36 · 6 阅读 · 0 评论