pytorch使用小技巧

给定预测pred维度[n, c],target[n],根据真值类别来得到预测值里对应的概率

pt = pred.gather(1, target)  # 1表示在pred指定维度根据target值获取相关类别预测概率

按照指定维度分割x,[3, 2]表示分成两个张量在指定维度的长度,一个张量A[1, 3, 352, 320],一个张量B[1, 2, 352, 320]

A, B = torch.split(X, [3,2], dim=1)  # X的维度[1, 5, 352, 320]

第二种写法是不对的,会导致self.weights没有得到梯度更新,因为.cuda作用于tensor会把其移动到GPU上,但是作用于Parameter时只会在GPU上拷贝一个副本,在梯度更新时,并不会影响到原始的Parameter参数。 

self.weights = nn.Parameter(weights.float().cuda())
self.weights = nn.Parameter(weights.float()).cuda()

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CVplayer111

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值