给定预测pred维度[n, c],target[n],根据真值类别来得到预测值里对应的概率
pt = pred.gather(1, target) # 1表示在pred指定维度根据target值获取相关类别预测概率
按照指定维度分割x,[3, 2]表示分成两个张量在指定维度的长度,一个张量A[1, 3, 352, 320],一个张量B[1, 2, 352, 320]
A, B = torch.split(X, [3,2], dim=1) # X的维度[1, 5, 352, 320]
第二种写法是不对的,会导致self.weights没有得到梯度更新,因为.cuda作用于tensor会把其移动到GPU上,但是作用于Parameter时只会在GPU上拷贝一个副本,在梯度更新时,并不会影响到原始的Parameter参数。
self.weights = nn.Parameter(weights.float().cuda())
self.weights = nn.Parameter(weights.float()).cuda()