
改进算法
文章平均质量分 53
机器学习和优化算法
擅长机器学习,深度学习,优化算法结合和编写,可以做回归,分类,时序预测,信号分解,递归预测等内容,面包多、公众号、知乎、B站同名!需要可联系我定制! 从未和“前程算法屋”合作,谨防被骗!!!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于ISSA-BiLSTM多变量时序预测(多输入单输出)Matlab代码
基于ISSA-BiLSTM多变量时序预测(多输入单输出)Matlab代码SSA改进点如下:需要测试函数另外定做(赠送改进点文献)1.sine混沌映射进行种群初始化2.动态自适应权重3.利用反向学习和柯西变异改进最优麻雀1.程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!注:1️⃣、运行环境要求MATLAB版本为2018b及其以上2️⃣、评价指标包括:R2、MAE、MSE、RPD、RMSE等,图很多,符合您的需要3️⃣、代码中文注释清晰,质量极高。原创 2025-06-26 23:48:42 · 236 阅读 · 0 评论 -
[原创]基于QPSO-SVR的锂电池剩余寿命预测 [电池容量提取+锂电池寿命预测]Matlab代码(单变量)
本文介绍一种基于QPSO-SVR的锂电池剩余寿命预测方法。该Matlab代码采用量子粒子群算法优化支持向量回归模型,实现单变量电池寿命预测。代码包含电池容量提取和寿命预测两个完整模块,使用NASA的B0005号电池数据进行训练,B0006号电池数据进行测试。代码特点包括:1) 中文注释清晰,2021b以上MATLAB版本可直接运行;2) 提供R2、MAE等多项评价指标;3) 采用迭代预测方法,附带测试数据集。该方法操作简便,适合科研人员直接应用于电池健康状态评估。原创 2025-06-20 23:46:32 · 434 阅读 · 0 评论 -
[原创]基于QPSO-SVR的锂电池剩余寿命预测 [电池容量提取+锂电池寿命预测]Matlab代码(单变量)
[原创]基于QPSO-SVR的锂电池剩余寿命预测 [电池容量提取+锂电池寿命预测]Matlab代码(单变量)NASA数据集,B0005号电池数据训练+测试。【量子粒子群】QPSO优化SVR的c和g!无需更改代码,双击main直接运行!!!1、内含“电池容量提取”和“锂电池寿命预测”两个部分完整代码和NASA的电池数据2、提取NASA数据集的电池容量,此处以以历史容量作为输入,采用迭代预测的方法对后的容量进行预测,本代码采用NASA的B0005号电池数据作为数据集。原创 2025-06-08 23:24:25 · 567 阅读 · 0 评论 -
[原创]IDBO-TCN-BiGRU多变量回归 改进蜣螂算法-时间卷积网络-双向门控循环单元的数据多变量回归
本文介绍了一种基于IDBO-TCN-BiGRU的多变量回归算法,该算法结合了改进的蜣螂算法、时间卷积网络和双向门控循环单元,适用于数据多变量回归任务。代码已调试完成,用户只需替换数据集并调整输出维度即可运行。改进点包括使用Chebyshev映射初始化种群、黄金正弦策略更新滚球蜣螂位置以及引入权重系数更新小偷蜣螂位置。运行环境要求MATLAB 2020b及以上版本,评价指标包括R2、MAE、MSE等。代码中文注释清晰,适合新手使用,并附赠测试数据集。用户可通过指定链接获取代码。原创 2025-05-21 22:38:24 · 168 阅读 · 0 评论 -
[原创]IDBO-TCN-BiGRU多输出回归 改进蜣螂算法-时间卷积网络-双向门控循环单元的数据多输出回归
本文介绍了一种基于IDBO-TCN-BiGRU的多输出回归模型,该模型结合了改进的蜣螂算法、时间卷积网络和双向门控循环单元,适用于数据多输出回归任务。代码已调试完成,用户只需替换数据集并调整输出维度即可运行。改进点包括使用Chebyshev映射初始化种群、黄金正弦策略更新滚球蜣螂位置以及引入权重系数更新小偷蜣螂位置。运行环境要求MATLAB 2021b及以上版本,评价指标包括R2、MAE、MSE、RMSE和MAPE等。代码注释清晰,适合新手使用,并附赠测试数据集。原创 2025-05-21 22:37:19 · 130 阅读 · 0 评论 -
BP4种优化算法多变量时序预测模型一键对比 Matlab代码(多输入单输出)
基于BP4种优化算法多变量时序预测模型一键对比 Matlab代码(多输入单输出)GWO、PSO、DBO、IDBO4种优化算法 一键对比!(新老算法均有)代码中包含GWO-BP、PSO-BP、DBO-XGBoost、IDBO-XGBoost4个多变量时序预测模型一键对比!1、和市面上的不同,运行一个main一键出对比图2、可以根据需要定制其他算法优化模型对比改进点:三个(附赠参考文献)--------【如需优化算法(IDBO)测试函数,拍之前私我】1、采用Chebyshev映射对种群进行初始化。原创 2025-03-27 23:55:18 · 155 阅读 · 0 评论 -
BP4种优化算法单变量时序预测模型一键对比 Matlab代码(单输入单输出)
基于BP4种优化算法单变量时序预测模型一键对比 Matlab代码(单输入单输出)GWO、PSO、DBO、IDBO4种优化算法 一键对比!(新老算法均有)代码中包含GWO-BP、PSO-BP、DBO-XGBoost、IDBO-XGBoost4个单变量时序预测模型一键对比!1、和市面上的不同,运行一个main一键出对比图2、可以根据需要定制其他算法优化模型对比改进点:三个(附赠参考文献)--------【如需优化算法(IDBO)测试函数,拍之前私我】1、采用Chebyshev映射对种群进行初始化。原创 2025-03-27 23:54:03 · 167 阅读 · 0 评论 -
BP4种优化算法回归模型一键对比 Matlab代码(多输入单输出)
基于BP4种优化算法回归模型一键对比 Matlab代码(多输入单输出)GWO、PSO、DBO、IDBO4种优化算法 一键对比!(新老算法均有)代码中包含GWO-BP、PSO-BP、DBO-XGBoost、IDBO-XGBoost4个回归模型一键对比!1、和市面上的不同,运行一个main一键出对比图2、可以根据需要定制其他算法优化模型对比改进点:三个(附赠参考文献)--------【如需优化算法(IDBO)测试函数,额外联系】1、采用Chebyshev映射对种群进行初始化。原创 2025-03-27 23:51:36 · 148 阅读 · 0 评论 -
[独家](3隐藏层)IDBO-BP+DBO-BP+BP3模型多变量回归预测一键对比 (多输入单输出)
独家原创](3隐藏层)IDBO-BP+DBO-BP+BP3模型多变量回归预测一键对比 (多输入单输出)每个模型都是三个隐藏层,算法优化BP的权值和阈值1.程序已经调试好,无需更改代码替换数据集即可运行,数据格式为excel!!!!2.如果需要增加优化算法或者更换对比对象,私信!1️⃣、运行环境要求MATLAB版本为2018b及其以上2️⃣、评价指标包括:R2、MAE、MSE、RPD、RMSE、MAPE等,图很多,符合您的需要3️⃣、代码中文注释清晰,质量极高。原创 2025-03-19 18:17:18 · 264 阅读 · 0 评论 -
基于ISSA-CNN-BiGRU-SelfAttention多变量时序预测(多输入单输出)Matlab代码
基于多变量时序预测(多输入单输出)Matlab代码SSA改进点如下:需要测试函数另+20(赠送改进点文献)1.sine混沌映射进行种群初始化2.动态自适应权重3.利用反向学习和柯西变异改进最优麻雀1.程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!注:1️⃣、运行环境要求MATLAB版本为2023b及其以上2️⃣、评价指标包括:R2、MAE、MSE、RPD、RMSE等,图很多,符合您的需要3️⃣、代码中文注释清晰,质量极高。原创 2025-03-13 21:43:35 · 256 阅读 · 0 评论 -
基于改进鲸鱼算法优化长短期记忆神经网络(GSWOA-LSTM)的多变量时序预测 (多输入单输出)
基于改进鲸鱼算法优化长短期记忆神经网络(GSWOA-LSTM)的多变量时序预测 (多输入单输出)WOA改进点如下:需要测试函数另+201.在鲸鱼位置更新公式中加入自适应权重,动态调节最优位置的影响力,改善算法收敛速度2.使用变螺旋位置更新策略,动态调整螺旋的形状,提升算法全局搜寻能力3.引入最优邻域扰动策略,避免算法陷入局部最优解,解决算法早熟现象。1.程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!。3.需要其他优化算法的也可以定制!原创 2025-03-13 21:37:40 · 230 阅读 · 0 评论 -
VMD-IDBO-LSTM多变量时序预测 基于变分模态分解-改进蜣螂算法-长短期记忆网络多变量时序预测
VMD-IDBO-LSTM多变量时序预测 基于变分模态分解-改进蜣螂算法-长短期记忆网络多变量时序预测IDBO优化的参数为:学习率,隐藏层节点数,正则化系数1.先运行main1进行VMD分解(图1-3)2.在运行main2进行多变量时序预测1.程序已经调试好,无需更改代码替换数据集即可运行!!!2.本程序采用北半球光伏数据进行测试,数据格式为excel!3.可以定制更换优化算法和模型1️⃣、运行环境要求MATLAB版本为2020b及其以上。原创 2025-03-12 01:34:32 · 231 阅读 · 0 评论 -
基于改进蜣螂算法优化长短期记忆神经网络(IDBO-LSTM)的数据单变量时序预测 Matlab
2️⃣、评价指标包括:R2、MAE、MSE、RPD、RMSE等,图很多,符合您的需要。4️⃣、赠送测试数据集,可以直接运行源程序。替换你的数据即可用 适合新手小白。1️⃣、运行环境要求MATLAB版本为2020b及其以上。2.购买前IDBO可以更换为其他的优化算法!基于改进蜣螂算法优化长短期记忆神经网络()的数据单变量时序预测 Matlab。3️⃣、代码中文注释清晰,质量极高。数据格式为excel!1.程序已经调试好,2、代码运行结果展示。原创 2025-03-12 00:39:54 · 207 阅读 · 0 评论 -
【分解+双重优化】基于AOA-VMD-QPSO-GRU的单变量时序预测 (单输入单输出)
【分解+双重优化】基于的单变量时序预测 (单输入单输出)基于算数优化算法优化变分模态分解结合量子粒子群优化门控循环单元()的单变量时序预测QPSO优化的参数为:学习率,隐藏层节点数,正则化系数1.先运行main1进行VMD和AOA-VMD分解,其中采用AOA确定最优alpha和K值(图2-3)2.在运行main2进行单变量时序预测1.程序已经调试好,无需更改代码替换数据集即可运行!!!2.本文程序采用风速数据进行测试,数据格式为excel!3.可以定制更换优化算法和模型。原创 2025-03-02 13:44:25 · 235 阅读 · 0 评论 -
【分解+双重优化】基于AOA-VMD-QPSO-BiLSTM的单变量时序预测 (单输入单输出)
【分解+双重优化】基于的单变量时序预测 (单输入单输出)基于算数优化算法优化变分模态分解结合量子粒子群优化双向长短期记忆网络()的单变量时序预测QPSO优化的参数为:学习率,隐藏层节点数,正则化系数1.先运行main1进行VMD和AOA-VMD分解,其中采用AOA确定最优alpha和K值(图2-3)2.在运行main2进行单变量时序预测1.程序已经调试好,无需更改代码替换数据集即可运行!!!2.本文程序采用风速数据进行测试,数据格式为excel!3.可以定制更换优化算法和模型。原创 2025-03-02 13:38:57 · 290 阅读 · 0 评论 -
【分解+双重优化】基于AOA-VMD-QPSO-LSTM的单变量时序预测 (单输入单输出)
【分解+双重优化】基于的单变量时序预测 (单输入单输出)基于算数优化算法优化变分模态分解结合量子粒子群优化长短期记忆网络()的单变量时序预测1.先运行main1进行VMD和AOA-VMD分解,其中采用AOA确定最优alpha和K值2.在运行main2进行单变量时序预测1.程序已经调试好,!!!2.本文程序采用进行测试,数据格式为excel!3.1️⃣、运行环境要求MATLAB版本为2020b及其以上2️⃣、评价指标包括:R2、MAE、MSE、RPD、RMSE、MAPE等,图很多,符合您的需要。原创 2025-03-02 13:34:13 · 332 阅读 · 0 评论 -
[原创]基于改进麻雀搜索算法优化广义回归神经网络(SCSSA-GRNN)多变量回归预测+交叉验证
原创]基于改进麻雀搜索算法优化广义回归神经网络(SCSSA-GRNN)多变量回归预测+交叉验证改进点:三个(附赠参考文献)--------【如需优化算法(SCSSA)测试函数,单独算1、折射反向学习机制初始化种群,增加物种多样性2、发现者位置更新中引入正余弦策略协调算法的全局和局部寻优能力3、在跟随者位置中引入柯西变异对最优解进行扰动更新,提高算法获取全局最优解能力程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!1.交叉验证默认五折,折数1-10可调!原创 2025-02-26 19:54:49 · 312 阅读 · 0 评论 -
[原创]基于改进麻雀搜索算法优化核极限学习机(SCSSA-KELM)多变量回归预测+交叉验证
原创]基于改进麻雀搜索算法优化核极限学习机(SCSSA-KELM)多变量回归预测+交叉验证改进点:三个(附赠参考文献)--------【如需优化算法(SCSSA)测试函数,单独算1、折射反向学习机制初始化种群,增加物种多样性2、发现者位置更新中引入正余弦策略协调算法的全局和局部寻优能力3、在跟随者位置中引入柯西变异对最优解进行扰动更新,提高算法获取全局最优解能力程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!1.交叉验证默认五折,折数1-10可调!原创 2025-02-20 23:16:03 · 233 阅读 · 0 评论 -
基于混沌映射+高斯变异改进麻雀搜索算法 ICSSA-BP多输出回归预测 (多输入多输出)
基于混沌映射+高斯变异改进麻雀搜索算法ICSSA-BP多特征回归预测 (多输入单输出) matlab代码改进点:混沌映射+高斯变异程序已经调试好,替换数据集根据输出个数修改outdim值即可运行!!!数据格式为excel!(如下)需要其他的都可以定制!1️⃣、运行环境要求MATLAB版本为2018b及其以上2️⃣、评价指标包括:R2、MAE、MSE、RMSE、MAPE等,图很多,符合您的需要3️⃣、代码中文注释清晰,质量极高4️⃣、赠送测试数据集,可以直接运行源程序。原创 2025-02-20 22:43:04 · 162 阅读 · 0 评论 -
(双隐藏层)基于改进麻雀搜索算法优化BP神经网络(SCSSA-BP)多变量回归预测 (多输入单输出)
基于改进麻雀搜索算法优化BP神经网络(SCSSA-BP)多变量回归预测 (多输入单输出)2️⃣、评价指标包括:R2、MAE、MSE、RMSE等,图很多,符合您的需要。4️⃣、赠送测试数据集,可以直接运行源程序。替换你的数据即可用 适合新手小白。1️⃣、运行环境要求MATLAB版本为2018b及其以上。3️⃣、代码中文注释清晰,质量极高。数据格式为excel!2、代码运行结果展示。原创 2025-02-20 22:21:30 · 150 阅读 · 0 评论 -
[原创]基于改进麻雀搜索算法优化BP神经网络(SCSSA-BP)多变量回归预测 (多输入单输出)
原创]基于改进麻雀搜索算法优化BP神经网络(SCSSA-BP)多变量回归预测 (多输入单输出)改进点:三个(附赠参考文献)--------【如需优化算法(SCSSA)测试函数,拍之前私我,额外加20】1、折射反向学习机制初始化种群,增加物种多样性2、发现者位置更新中引入正余弦策略协调算法的全局和局部寻优能力3、在跟随者位置中引入柯西变异对最优解进行扰动更新,提高算法获取全局最优解能力程序已经调试好,无需更改代码替换数据集即可运行!!!数据格式为excel!(如下)需要其他的都可以定制。原创 2025-02-20 22:19:06 · 253 阅读 · 0 评论 -
IDBO-LSTM多输出回归 基于改进蜣螂算法-长短期记忆神经网络多输出回归预测(多输入多输出)
IDBO-LSTM多输出回归 基于改进蜣螂算法-长短期记忆神经网络多输出回归预测(多输入多输出)2️⃣、评价指标包括:R2、MAE、MSE、RMSE、MAPE等,图很多,符合您的需要。4️⃣、赠送测试数据集,可以直接运行源程序。替换你的数据即可用 适合新手小白。1️⃣、运行环境要求MATLAB版本为2018b及其以上。3️⃣、代码中文注释清晰,质量极高。数据格式为excel!需要其他的都可以定制!2、代码运行结果展示。原创 2025-02-14 15:08:54 · 253 阅读 · 0 评论 -
[独家原创]基于改进蜣螂算法优化门控循环单元(IDBO-GRU)的数据多特征分类预测 Matlab
独家原创]基于改进蜣螂算法优化门控循环单元(IDBO-GRU)的数据多特征分类预测 Matlab程序已经调试好,!!!数据格式为excel!2.购买前IDBO可以更换为其他的优化算法!1️⃣、运行环境要求MATLAB版本为2021b及其以上。2️⃣、代码中文注释清晰,质量极高3️⃣、运行结果图包括分类效果图,迭代优化图,混淆矩阵图,如下所示4️⃣、赠送测试数据集,可以直接运行源程序。适合新手小白。原创 2025-02-08 23:23:47 · 196 阅读 · 0 评论 -
[原创]基于改进麻雀搜索算法优化双向长短期记忆网络(SCSSA-BiLSTM)多特征分类预测 (多输入单输出)
3️⃣、运行结果图包括分类效果图,迭代优化图,混淆矩阵图,如下所示。1️⃣、运行环境要求MATLAB版本为2018b及其以上。4️⃣、赠送测试数据集,可以直接运行源程序。[原创]基于改进麻雀搜索算法优化双向长短期记忆网络(数据格式为excel格式!)多特征分类预测 (多输入单输出)2️⃣、代码中文注释清晰,质量极高。2、代码运行结果展示。原创 2025-01-14 16:12:30 · 336 阅读 · 0 评论 -
Matlab 两种策略改进的白鲸优化算法(EBWO),包含23种测试函数及定性分析 赠送改进点文献
Matlab 两种策略改进的白鲸优化算法(EBWO),包含23种及其中包括与SSA,GWO,WOA,BWO算法对比,EBWO在收敛速度和预测精度上表现非常好原理介绍:BWO改进点如下:(含有23个基准测试函数性能对比,下图仅展示三个)1.引入准反向学习QOBL策略,改善算法收敛速度2.引入旋风觅食策略,提升算法的开发能力注:1、适合新手小白~2、附赠改进算法相关文献 可直接运行3、发货后概不退换 可保证运行4、此商品仅出售程序 不包含讲解。原创 2024-09-18 20:26:29 · 443 阅读 · 0 评论