转载自https://www.jb51.net/article/168009.htm
1. loss计算和反向传播
1 2 3 4 5 6 7 8 |
|
通过定义损失函数:criterion,然后通过计算网络真实输出和真实标签之间的误差,得到网络的损失值:loss;
最后通过loss.backward()完成误差的反向传播,通过pytorch的内在机制完成自动求导得到每个参数的梯度。
需要注意,在机器学习或者深度学习中,我们需要通过修改参数使得损失函数最小化或最大化,一般是通过梯度进行网络模型的参数更新,通过loss的