关于pytorch中网络loss传播和参数更新的理解

本文详细介绍了PyTorch中如何计算网络损失(loss)并进行反向传播,以及如何利用优化算法更新参数。通过定义损失函数、执行loss.backward()进行误差反向传播,获取每个参数的梯度。接着讲解了使用torch.optim包选择优化算法更新网络参数的步骤,并强调了在更新前需清零梯度的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转载自https://www.jb51.net/article/168009.htm

1. loss计算和反向传播

1

2

3

4

5

6

7

8

import torch.nn as nn

  

criterion = nn.MSELoss().cuda()

  

output = model(input)

  

loss = criterion(output, target)

loss.backward()

通过定义损失函数:criterion,然后通过计算网络真实输出和真实标签之间的误差,得到网络的损失值:loss;

最后通过loss.backward()完成误差的反向传播,通过pytorch的内在机制完成自动求导得到每个参数的梯度。

需要注意,在机器学习或者深度学习中,我们需要通过修改参数使得损失函数最小化或最大化,一般是通过梯度进行网络模型的参数更新,通过loss的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值