概念:
二叉树的遍历是指:按照某条搜索路径访问树中的每个结点,是的每个结点均被访问一次,而且仅被访问一次。
方式分类:
- 先序遍历
- 中序遍历
- 后序遍历
具体定义与实现:
值得注意的是:二叉树的遍历可以使用递归思想实现也可以使用非递归思想实现。使用递归思想之前,你需要了解递归思想的具体实现方法和函数栈的概念!
本文先讲解递归思想的实现,非递归思想的实现在我的博客《二叉树的遍历算法02(C++)》中详细讲解,欢迎阅读!
一、先序遍历:
- 访问根结点
- 先序遍历左子树
- 先序遍历右子树
代码实现:
void preorder(BiTNode* T) {
if (T != nullptr)
{
cout << T->data << " ";
preorder(T->lchild);
preorder(T->rchild);
}
}
二、中序遍历:
- 中序遍历左子树
- 访问根结点
- 中序遍历右子树
代码实现:
void inorder(BiTNode* T) {
if (T != nullptr)
{
inorder(T->lchild);
cout << T->data << " ";
inorder(T->rchild);
}
}
三、后序遍历:
- 后序遍历左子树
- 后序遍历右子树
- 访问根结点
代码实现:
void postorder(BiTNode* T) {
if (T != nullptr)
{
postorder(T->lchild);
postorder(T->rchild);
cout << T->data << " ";
}
}
整体代码实现(包括手动构建一个二叉树):
手动构建的二叉树如下:
#include<iostream>
using namespace std;
typedef struct BiTNode {
int data;
struct BiTNode* lchild, * rchild;
}BiTNode, * BiTree;
//手动构建一颗二叉树
void createtree(BiTNode*& T) {
T = new BiTNode;
T->data = 1;
BiTNode* p1 = new BiTNode;
p1->data = 2;
BiTNode* p2 = new BiTNode;
p2->data = 3;
BiTNode* p3 = new BiTNode;
p3->data = 4;
BiTNode* p4 = new BiTNode;
p4->data = 5;
BiTNode* p5 = new BiTNode;
p5->data = 6;
T->lchild = p1;
T->rchild = p2;
p1->lchild = p3;
p1->rchild = p4;
p4->lchild = nullptr;
p4->rchild = nullptr;
p3->lchild = nullptr;
p3->rchild = nullptr;
p2->lchild = p5;
p2->rchild = nullptr;
p5->lchild = nullptr;
p5->rchild = nullptr;
}
//先序遍历
void preorder(BiTNode* T) {
if (T != nullptr)
{
cout << T->data << " ";
preorder(T->lchild);
preorder(T->rchild);
}
}
//中序遍历
void inorder(BiTNode* T) {
if (T != nullptr)
{
inorder(T->lchild);
cout << T->data << " ";
inorder(T->rchild);
}
}
//后序遍历
void postorder(BiTNode* T) {
if (T != nullptr)
{
postorder(T->lchild);
postorder(T->rchild);
cout << T->data << " ";
}
}
int main() {
BiTNode* T;
createtree(T);
cout << "先序遍历的结果如下: " << endl;
preorder(T);
cout<<endl << "********************" << endl;
cout << "中序遍历的结果如下: " << endl;
inorder(T);
cout << endl << "********************" << endl;
cout << "后序遍历的结果如下: " << endl;
postorder(T);
cout << endl << "********************" << endl;
return 0;
}
执行结果:
总结:
二叉树的递归遍历算法,时间复杂度是O(n),并且递归工作栈的深度就是树的深度。
二叉树的递归遍历算法简单明了,但是相对于非递归算法的实现,效率低。