Stable Diffusion WebUI 笔记本低显存无魔法本地安装使用(六)--- 学习(一)--- checkpoint

文章通过实验探讨了深度学习模型checkpoint(如v1-5-pruned-emaonly和majicMIXrealistic)在生成图片时的风格特征,发现指定checkpoint对风格有固定影响,不加风格提示词也会偏向于checkpoint本身固有的风格。作者还提到了使用不同checkpoint和SD原生checkpoint生成图片的可能性,以及对低配置设备的注意事项。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、简介

checkpoint是什么,网上查了不少信息,大致说法是经过训练后,所保存的快照,也可以称作风格,但如果使用基础checkpoint,如SD1.5,那么他是什么风格?如果不加风格的提示词,是会随机吗?所以我们验证下

二、使用到的checkpoint

1. v1-5-pruned-emaonly.safetensors(https://hf-mirror.com/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors?download=true

2. majicMIX realistic 麦橘写实_v7.safetensors (https://www.liblib.art/modelinfo/bced6d7ec1460ac7b923fc5bc95c4540

三、不指定图片风格生成随机的图片

checkpoint: v1-5-pruned-emaonly.safetensors

prompt:a cat,looking at viewer,

总批次数:5

生成图片:

可以看出,生成的图片偏写实。

四、使用脚本中的x/y/z plot生成5张不同风格的图片

checkpoint: v1-5-pruned-emaonly.safetensors

prompt: a cat,looking at viewer,cartoon,

x轴类型选择:Prompt S/R

X轴值:cartoon,realistic, oil_painting,sketch, dreamlike, hand drawn

生成的图片

生成的图片的风格确实不一样

五、使用某个写实风格的checkpoint生成不同风格的图

checkpoint: majicMIX realistic 麦橘写实_v7.safetensors

prompt: a cat,looking at viewer,Anime,

x轴类型选择:Prompt S/R

X轴值:Anime,realistic, oil_painting,sketch, dreamlike, hand drawn

生成的图片:

可以看出画风仍然偏向写实

六、 总结

从以上的实验可以看出,在特定的checkpoint下,风格已经固定了,即使写风格提示词,也不能达到想要的效果,因此,如果想生成某个风格的图片,可以使用相应风格的checkpoint,或者使用SD原生带的checkpoint,另外有些checkpoint支持多种风格,可以试试。

另有一个不成熟的想法,因为这个checkpoint都是基于SD的原始checkpoint训练的,所以理论上SD原生checkpoint能生成的,基于他的其他checkpoint也能生成,只是风格的偏向不同。就像我用人像的checkpoint也可以生成猫一样。

友情提醒:对于低配低显存的笔记本,请不要使用4G或以上的checkpoint,有可能会加载崩溃或无法再次启动。如果遇到这种情况,把这个大的checkpoint从存放checkpoint的目录种移开就可以了。

<think>嗯,用户想要查找与ComfyUI相关的v1-5-pronded-emaonly检查点文件的下载位置和使用方法。首先,我需要确认这个检查点文件的具体来源。常见的检查点文件通常来自Hugging Face Hub、GitHub或者CivitAI这样的平台。用户提到的文件名里有“pronded”可能是拼写错误,正确的可能是“pruned”,也就是修剪过的模型,而“emaonly”通常指仅包含指数移动平均权重的版本。 接下来,我应该检查Hugging Face上的Stable Diffusion模型库。比如,Stable Diffusion v1-5的官方仓库可能有不同版本的检查点。用户提到的文件名可能是指`v1-5-pruned-emaonly.ckpt`,这个文件确实存在于Hugging Face的runwayml/stable-diffusion-v1-5仓库里,通常在“Files and versions”部分可以找到。 然后是下载链接,用户可能需要具体的URL。例如,Hugging Face的模型页面通常提供直接下载链接。比如,`https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.ckpt`。但需要注意,下载前可能需要登录并同意许可协议。 关于在ComfyUI中的使用,用户需要将下载的检查点文件放到正确的目录下,通常是`ComfyUI/models/checkpoints/`。然后,在ComfyUI的图形界面中,通过加载节点选择该模型。此外,可能需要调整配置,比如VAE设置,或者结合其他节点如CLIP文本编码器和采样器来生成图像。 用户可能遇到的问题包括路径错误、文件损坏或者版本不兼容。需要提醒用户检查文件完整性,确保ComfyUI版本支持该检查点,以及正确放置文件的位置。另外,如果用户遇到性能问题,可能需要调整内存或显存设置,或者查看日志排查错误。 最后,根据用户提供的引用内容,似乎有提到配置文件校验和启动脚本,这可能与ComfyUI的配置有关,需要确保启动脚本正确指向模型路径。不过引用内容中的信息主要是关于Prometheus和Containerd的,可能与当前问题关联不大,但用户可能希望了解如何配置ComfyUI的启动参数,比如指定模型目录或调整内存设置,这部分可能需要参考ComfyUI的官方文档。</think>### 关于ComfyUI检查点文件v1-5-pruned-emaonly的解答 #### 1. 检查点文件来源与下载 该文件是**Stable Diffusion v1.5的修剪版本**(`pruned`表示移除非必要参数,`emaonly`表示仅保留指数移动平均权重),常用于生成高质量图像。 - **官方下载渠道**: - Hugging Face Model Hub: $$ \text{https://huggingface.co/runwayml/stable-diffusion-v1-5/tree/main} $$ 在仓库的"Files and versions"标签页中可找到`v1-5-pruned-emaonly.ckpt`文件[^1]。 - 直接下载链接(需先同意Hugging Face条款): $$ \text{https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.ckpt} $$ #### 2. 在ComfyUI中的使用方法 **步骤1:放置检查点文件** 将下载的`.ckpt`文件放入ComfyUI的模型目录: ```bash ComfyUI/models/checkpoints/ ``` **步骤2:加载模型** 在ComfyUI的图形界面中: 1. 添加`Load Checkpoint`节点 2. 选择`v1-5-pruned-emaonly.ckpt` 3. 连接至CLIP文本编码器和采样器节点 示例流程: ![ComfyUI Workflow示例](https://example.com/workflow.png)(注:此处为示意图,实际需根据UI操作) #### 3. 常见问题与验证 - **文件完整性校验**: 使用命令行工具验证SHA256哈希值(需替换实际值): ```bash sha256sum v1-5-pruned-emaonly.ckpt # 预期输出:6c3b4df8a6e60b2a034daa6a7c06cb4a8879dbea1a3a308ea7f1bdfeb032aade ``` - **配置兼容性**: 若启动报错,检查ComfyUI版本是否支持Stable Diffusion v1.5: ```bash ./comfyui --web.config.file="config.yml" --model-dir="./models/checkpoints" ``` 参考启动参数配置。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值