政安晨:【Keras机器学习示例演绎】(四十一)—— 使用预先训练的词嵌入

本博客使用预训练的GloVe词嵌入对Newsgroup20数据集进行文本分类。通过清洗数据,创建词汇索引,加载预训练词嵌入,建立1D卷积模型并训练,最终导出端到端模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

设置

简介

下载新闻组 20 数据

让我们来看看这些数据

清洗数据并将数据分成训练集和验证集

创建词汇索引

加载预训练的词嵌入

建立模型

训练模型

导出端到端模型


政安晨的个人主页政安晨

欢迎 👍点赞✍评论⭐收藏

收录专栏TensorFlow与Keras机器学习实战

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

本文目标:使用预训练的 GloVe 词嵌入对 Newsgroup20 数据集进行文本分类。

设置

import os

# Only the TensorFlow backend supports string inputs.
os.environ["KERAS_BACKEND"] = "
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

政安晨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值