18、计算机数值表示与IEEE 754标准详解

计算机数值表示与IEEE 754标准详解

1. 二进制数的转换

二进制数的每一位都有其位置权重,利用这一特性可以将二进制数转换为十进制数。对于二进制数的小数部分,也可以采用类似的方法转换为十进制小数。例如:

.1 0 1 0 1
|
|
|
.500 _____________________| 
| 
|
.125 _________________________| 
|
.03125 ____________________________|
------
.65625

2. 定点表示法

在计算机中,以二进制形式对实数进行编码和存储存在一些难题,其中之一就是小数点的位置问题。由于二进制只有两个符号,且都用于表示数值,没有额外符号来表示小数点。例如,十进制数58.125可以分别对整数部分和小数部分进行编码:
- 58 = 111010B
- .125 = .001B

在计算机里,无法直接对二进制小数进行显式编码。一种可行的方案是假定小数点位于固定位置。不过,定点表示法存在很大局限性,它要求小数点左右的位数是固定的。比如要存储312.250,其二进制表示为:
- 312 = 100111000
- .250 = .01

该数值的二进制编码共需11位,虽然可以存于16位结构中,但由于该定点格式仅分配8位来表示整数部分,而312需要9位二进制数,所以无法完成编码。

3. 浮点表示法

浮点表示法不采用固定的小数点位置,其灵感源自科学记数法。在传统科学记数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值