向量化vectorization

本文介绍了向量化编程,一种利用现代处理器并行能力,通过同时处理数据向量来加速代码执行的技术。通过与非向量化代码的对比,展示了向量化在处理数组操作时如何借助SIMD等处理器指令集实现显著的性能提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       向量化:向量化是一种特殊的编程技术,它可以充分利用现代处理器的并行处理能力,以提高代码的执行效率。它的基本思想是对一组数据(或称为数据向量)执行相同的操作,而不是对单个数据元素逐一执行。这样可以极大地提高代码的运行效率,因为处理器可以在同一时间内处理多个数据元素。

概念有了还是有点小抽象, 那么下边的例子可以帮助理解 :

  • 假设你有包含两个整数的数组 A 和 B, 你想计算他们的元素和. 并将结果存储到 数组C 当中. 在非向量化的代码中, 你可能会这样做 :
for (int i = 0; i < n; i++) {
    C[i] = A[i] + B[i];
}

这样呢, 加法操作被逐一地应用在每个元素上.

  • 相反,在向量化的代码中,你可以一次处理多个元素,这通常依赖于处理器的特定指令集,比如 SIMD(Single Instruction, Multiple Data,单指令,多数据)。如果你的处理器支持一次处理4个整数的 SIMD 指令,向量化的代码可能会看起来像这样
for (int i = 0; i < n; i += 4) {
    C[i:i+3] = A[i:i+3] + B[i:i+3];
}
  • 这个例子中,一次加法操作处理了4个元素。这样的代码可以更快地执行,因为在每个循环迭代中,处理器实际上在执行4次加法操作
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值