Highways
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 20029 Accepted: 5936 Special Judge
Description
The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has a very poor system of public highways. The Flatopian government is aware of this problem and has already constructed a number of highways connecting some of the most important towns. However, there are still some towns that you can't reach via a highway. It is necessary to build more highways so that it will be possible to drive between any pair of towns without leaving the highway system.
Flatopian towns are numbered from 1 to N and town i has a position given by the Cartesian coordinates (xi, yi). Each highway connects exaclty two towns. All highways (both the original ones and the ones that are to be built) follow straight lines, and thus their length is equal to Cartesian distance between towns. All highways can be used in both directions. Highways can freely cross each other, but a driver can only switch between highways at a town that is located at the end of both highways.
The Flatopian government wants to minimize the cost of building new highways. However, they want to guarantee that every town is highway-reachable from every other town. Since Flatopia is so flat, the cost of a highway is always proportional to its length. Thus, the least expensive highway system will be the one that minimizes the total highways length.
Input
The input consists of two parts. The first part describes all towns in the country, and the second part describes all of the highways that have already been built.
The first line of the input file contains a single integer N (1 <= N <= 750), representing the number of towns. The next N lines each contain two integers, xi and yi separated by a space. These values give the coordinates of ith town (for i from 1 to N). Coordinates will have an absolute value no greater than 10000. Every town has a unique location.
The next line contains a single integer M (0 <= M <= 1000), representing the number of existing highways. The next M lines each contain a pair of integers separated by a space. These two integers give a pair of town numbers which are already connected by a highway. Each pair of towns is connected by at most one highway.
Output
Write to the output a single line for each new highway that should be built in order to connect all towns with minimal possible total length of new highways. Each highway should be presented by printing town numbers that this highway connects, separated by a space.
If no new highways need to be built (all towns are already connected), then the output file should be created but it should be empty.
Sample Input
9
1 5
0 0
3 2
4 5
5 1
0 4
5 2
1 2
5 3
3
1 3
9 7
1 2
Sample Output
1 6
3 7
4 9
5 7
8 3
本题的大致题意是要求构建最小生成树,输入一个n,表示有n个点,接下来是n行是n个点的坐标。再输入m,表示已经有m个通路,接下来是那几个点之间有通路。要求输出构建一个最小生成树 所需要的其余通路。
这道题不能使用Kruskal, 只能使用Prim
Pime算法,将每个点按照路径进行遍历,使用dis数组记录当前点有关的最短路,每次都要更新,在更新时要注意上一个点的某条通路可能比当前点的通路要短(划重点)。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN = 800;
const int INF = 0x3f3f3f3f;
struct node
{
int x;
int y;
} num[MAXN];
int n, m;
int MAP[MAXN][MAXN];
int dis[MAXN];
int path[MAXN];
bool vis[MAXN];
void Prim()
{
memset(vis, false, sizeof(vis));
for(int i = 1; i <= n; i++)
{
dis[i] = MAP[1][i];
path[i] = 1;
}
vis[1] = true;
int MIN;
int t;
for(int k = 1; k < n; k++)
{
MIN = INF;
for(int i = 1; i <= n; i++)
{
if(vis[i] == false && dis[i] < MIN)
{
MIN = dis[i];
t = i;
}
}
vis[t] = true;
if(MAP[path[t]][t] != 0)
printf("%d %d\n", path[t], t);
for(int i = 1; i <= n; i++)
{
if(vis[i] == false && dis[i] > MAP[t][i])
{
dis[i] = MAP[t][i];
path[i] = t;
}
}
}
}
int main()
{
while(~scanf("%d", &n))
{
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
if(i == j) MAP[i][j] = 0;
else MAP[i][j] = INF;
for(int i = 1; i <= n; i++)
scanf("%d%d", &num[i].x, &num[i].y);
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
MAP[i][j] = (num[i].x-num[j].x)*(num[i].x-num[j].x)+(num[i].y-num[j].y)*(num[i].y-num[j].y);
scanf("%d", &m);
int a, b;
for(int i = 1; i <= m; i++)
{
scanf("%d%d", &a, &b);
MAP[a][b] = MAP[b][a] = 0;
}
Prim();
}
return 0;
}
如果题目要求输出最小生成树的长度,可以在查找最短路径的过程中增加一个变量记录最短路径的长度。