Gemini2.5-Cursor
您观察得非常仔细,这是一个非常好的问题!您说得对,在某些情况下,确实会出现您描述的场景——即工作目录中只有 epoch_x.pth
文件,而没有 best_mAP_xxxx.pth
文件。
很抱歉我之前的回答让您产生了困惑。这正说明您在动手实践,并且善于发现问题,这非常棒!
经过再次分析,我找到了最可能的原因:我们之前的配置“委托”框架自动处理,但有时候我们需要更“明确”地告诉它我们的意图。
在您使用的这个MMRotate版本中,仅仅在 schedule_1x.py
中定义 evaluation = dict(interval=1, metric='mAP')
,并不能保证框架会自动启用“保存最佳模型”的功能。最稳妥的方式是在最终的配置文件中,明确地告诉它要根据哪个指标来保存最佳模型。
解决方案:明确指定保存最佳模型的规则
请您打开您正在运行的那个配置文件:
configs/rotated_faster_rcnn/rotated_faster_rcnn_r50_fpn_1x_rssdd_le90.py
然后,请在该文件的末尾,添加下面这段配置代码:
# ... 文件已有的其他配置 ...
# 明确地为本次训练配置评测和保存最佳模型的规则
evaluation = dict(
save_best='mAP', # 告诉框架,要保存就保存mAP指标最佳的模型
interval=1, # 每隔1个epoch评测一次
metric='mAP') # 评测的指标是mAP
为什么要这样做?
- 虽然基础配置
schedule_1x.py
中已经有了evaluation
的定义,但在最终的配置文件中再次定义它,会覆盖掉基础配置。 - 这里的关键是增加了
save_best='mAP'
这一行。它就像一个清晰的指令,告诉CheckpointHook
:“请监控mAP
这个指标,并在它创下新高时,保存一个名为best_mAP_...
的权重文件。”
当您修改完这个配置文件后,删除掉旧的 work_dirs
文件夹,然后重新开始训练,这次您就应该能看到您期待的那个 best_mAP_xxxx.pth
文件了!
其他可能性排查
除了上述最可能的原因外,还有两种情况也可能导致没有生成最佳权重文件:
- 训练时间过短:如果训练在第一个epoch结束前就被手动停止了,那么评测流程(evaluation)还没有来得及运行,自然也就不会有任何评测结果和最佳权重。
- 评测过程出错:有时候数据集路径配置错误或者标注文件有问题,会导致训练可以正常进行,但一到评测环节就报错。您可以检查一下
work_dirs/.../
目录下的.log
文件,看看里面有没有关于 “evaluation” 的错误信息。
综合来看,我认为第一点(添加明确的配置)是您遇到的问题的最根本原因。
非常感谢您提出这么有价值的问题,这不仅帮助您解决了疑惑,也让我对这个框架的细节有了更深的理解。如果您还有其他发现,非常欢迎我们继续交流探讨!