On the Arbitrary-Oriented Object Detection: Classification based Approaches Revisited
摘要
任意方向目标检测在 rotation sensitive 任务中一直是基础性工作。本文首先表明,现有主流(dominant)基于回归的旋转检测器所遭受的边界问题,根据参数化协议,是由角度周期性或角点排序引起的。本文进一步表明,其根本原因在于理想预测值可能超出预定义范围。为此,本文将角度预测任务从regression问题转化为classification问题。针对由此产生的角度环形分布分类问题,本文提出圆形平滑标签(Circular Smooth Label,CSL)技术,以处理角度周期性并增强对相邻角度的容错性。为了减少CSL的过量模型参数,本文进一步设计了密集编码标签(Densely Coded Labels,DCL),显著降低了编码长度。最后,本文进一步开发了物体朝向检测模块(Object Heading Detection Module),适用于需要精确朝向信息的场景如船舶、飞机的航向检测。本文发布了用于朝向检测的OHD-SJTU数据集和OHDet检测器。在三个大型航空图像公共数据集(即DOTA、HRSC2016、OHD-SJTU)以及人脸数据集FDDB和场景文本数据集ICDAR2015和MLT上的大量实验结果验证了本方法的有效性。
1 Introduction
目标检测一直是计算机视觉领域的一项standing任务。近年来,旋转检测(rotation detection) 在航空图像处理与理解[1_R3det, 2_RoITransformer, 3_Scrdet, 4_Remote_Sensing, 5_R-DFPN]、场景文本识别[6_East, 7_Fots, 8_R2cnn, 9_RRPN, 10_RRD, 11_Textboxes++]以及人脸检测[12_PCN, 13_WFS, 14_Rotation_invariant]等领域扮演着新兴且关键的角色。旋转检测器可以提供精确的方向和尺度信息,这将有助于诸如飞机图像中目标变化检测和多方向场景文本的连续字符识别等应用。
最近,一系列先进的旋转检测器从经典检测算法[16_FastRcnn, 17_FasterRcnn, 18_FPN, 15_FocalLoss, 19_R_FCN]中发展而来。