BBDM: Image-to-image Translation with Brownian Bridge Diffusion Models 译读笔记

BBDM: Image-to-image Translation with Brownian Bridge Diffusion Models

摘要

图像到图像的转换是计算机视觉和图像处理领域中一个重要且具有挑战性的问题。扩散模型(DM)在高质量图像合成方面展现出巨大的潜力,并在图像到图像转换任务上取得了具有竞争力的性能。然而,现有的大多数扩散模型将图像到图像的转换视为条件生成过程,并且严重受到不同域之间的差异影响。本文提出了一种基于布朗桥扩散模型(Brownian Bridge Diffusion Model, BBDM)的新型图像到图像翻译方法,该方法将翻译过程建模为随机布朗桥过程,通过双向扩散直接学习两个领域之间的映射,而非条件生成过程。据本文所知,这是首次将布朗桥扩散过程应用于图像到图像转换的研究。在多个基准测试上的实验结果表明,所提出的 BBDM 模型在视觉检验和定量指标上均实现了具有竞争力的性能。

1 引言

Image-to-image translation [14_pix2pix] 是指在两个不同图像域之间构建映射的过程。许多计算机视觉和图形学中的问题都可以表述为图像到图像翻译(image-to-image translation)问题,例如风格迁移[3_Patch_based, 9_Image_Style, 13_Style_Transfer, 22_Photo_Style]、语义图像合成[21_Layout_to_image, 24_, 34_, 36_, 37_, 40_]以及草图到照片的合成[2,14,43].

### Brownian Bridge Diffusion Models 技术介绍 Brownian Bridge Diffusion Models (BBDM),作为一种先进的图像到图像转换方法,主要依赖于布朗桥扩散理论。此模型不仅能够实现高质量的图像风格迁移,还能够在超分辨率和其他复杂的图像处理任务中表现出色[^1]。 #### 布朗桥的概念 在统计物理中,布朗桥描述了一个随机过程,在给定起点和终点的情况下,路径如何随时间演变。对于两个固定的时间点t=0和t=T之间的任意时刻τ(0<τ<T),如果已知位置分别为X_0=x_0以及X_T=x_T,则可以定义一条连接这两端点间的连续曲线作为“桥梁”。这种特性使得布朗桥非常适合用于建模具有边界条件约束的过程或现象[^2]。 #### 扩散模型的应用 当应用到图像生成领域时,BBDM采用了一种逆向思维的方式——即从噪声数据逐步恢复成清晰的目标图片。具体来说: - **前向过程**:输入一张原始图A并加入逐渐增加强度的高斯白噪音直到完全覆盖细节特征; - **反向过程**:再反过来尝试从未受干扰的状态下预测每一步应该去除多少扰动量以便最终还原出原貌B; 整个训练阶段旨在最小化两者间差异损失函数从而优化参数设置以达到最佳效果[^3]。 ```python import torch.nn as nn class BBDM(nn.Module): def __init__(self, config): super(BBDM, self).__init__() # 初始化网络结构 def forward(self, x_tilde, t): # 定义前向传播逻辑 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值