LangChain实战技巧之五:让模型“自动生成”Prompt(提示词)的两种方式

预备知识

  • with_structured_output

  • bind_tools

对这两种方式不了解的朋友,可以翻阅我的这篇文章找到用法哈

LangChain实战技巧之三:关于Tool的一点拓展

实现方法

方法一

步骤一

# 首先,新建一个提示词抽取器
prompt_extractor = ChatPromptTemplate.from_template(
template="""
    你从用户的输入中提取出一些`关键信息`,然后根据关键信息生成一个提示词模板, 提示词模板应该是一个有效的Prompt Template。
    
    `关键信息`包含以下内容:
    
    - 找到有效的提示词的目标
    - 找到有效的要求内容
    - 找到传递给提示词模板的变量
    
    用户的输入内容是: {input}

"""
)

# 再来一个Prompt
prompt_generator = ChatPromptTemplate.from_messages(
        [
            ("system", "请根据以下输入的内容,生成一个有效的Prompt Template。"),
            ("human", "{input}"
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值