交易策略的向量分析与回测
在交易策略的分析中,pandas 是一个强大的工具,它能够进行向量分析。许多重要的统计指标,如对数收益率、累积收益率、年化收益率、波动率、最大回撤和最大回撤期等,通常只需一行或几行代码就能计算得出。而且,通过简单的方法调用就能可视化结果,这是它的额外优势。
1. 基于简单移动平均线(SMA)的策略
有一个 Python 代码包含了用于 SMA 交易策略向量回测的类。定义 SMAVectorBacktester
类的实例时,需要提供以下参数:
| 参数 | 描述 |
| ---- | ---- |
| symbol | 要使用的 RIC(工具数据) |
| SMA1 | 较短 SMA 的时间窗口(天) |
| SMA2 | 较长 SMA 的时间窗口(天) |
| start | 数据选择的开始日期 |
| end | 数据选择的结束日期 |
以下是具体的操作步骤:
1. 导入模块:
import SMAVectorBacktester as SMA
- 实例化主类:
smabt = SMA.SMAVectorBacktester('EUR=', 42, 252, '2010-1-1', '2019-12-31')
- 回测基于 SMA 的策