Python 人脸识别就多简单,看这个就够了!

点击上方“Python编程与实战”,选择“置顶公众号”

第一时间获取 Python 技术干货!

阅读文本大概需要 11分钟。

今天给大家介绍一个世界上最简洁的人脸识别库 face_recognition,你可以使用 Python 和命令行工具进行提取、识别、操作人脸。

基于业内领先的 C++ 开源库 dlib 中的深度学习模型,用 Labeled Faces in the Wild 人脸数据集进行测试,有高达99.38%的准确率。

1.安装

最好是使用 Linux 或 Mac 环境来安装,Windows 下安装会有很多问题。在安装 face_recognition 之前你需要先安装以下几个库,注意顺序!

1.1 先安装 cmake 和 boost
pip  install  cmake
pip install boost
1.2 安装 dlib
pip install dlib

此处安装可能要几分钟。如安装出错,建议使用 whl 文件来安装
下载地址:https://pypi.org/simple/dlib/

1.3 安装 face_recognition

face_recongnition 一般要配合 opencv 一起使用

pip install face_recognition
pip install opencv-python

2. 人脸识别

比如这里总共有三张图片,其中有两张已知,第三张是需要识别的图片

首先获取人脸中的信息

kobe_image = face_recognition.load_image_file("kobe.jpg")  # 已知科比照片
jordan_image = face_recognition.load_image_file("jordan.jpeg")  # 已知乔丹照片
unknown_image = face_recognition.load_image_file("unkown.jpeg")  # 未知照片

kobe_face_encoding = face_recognition.face_encodings(kobe_image)[0]
jordan_face_encoding = face_recognition.face_encodings(jordan_image)[0]
unknown_face_encoding = face_recognition.face_encodings(unknown_image)[0]

代码中前三行分别是加载三张图片文件并返回图像的 numpy 数组,后三行返回图像中每个面部的人脸编码

然后将未知图片中的人脸和已知图片中的人脸进行对比,使用 compare_faces() 函数, 代码如下:

known_faces = [
    kobe_face_encoding,
    jordan_face_encoding
]
results = face_recognition.compare_faces(known_faces, unknown_face_encoding)  # 识别结果列表
print("这张未知照片是科比吗? {}".format(results[0]))
print("这张未知照片是乔丹吗? {}".format(results[1]))

运行结果如下:

不到二十行代码,就能识别出人脸是谁,是不是 so easy!

3. 人脸标注

仅仅识别图片中的人脸总是感觉差点什么,那么将识别出来的人脸进行姓名标注是不是更加有趣~

已知图片的识别和前面代码基本是一样的,未知图片代码多了人脸位置的识别,并使用了face_locations() 函数。代码如下:

face_locations = face_recognition.face_locations(unknown_image)
face_encodings = face_recognition.face_encodings(unknown_image, face_locations)

函数传入两个参数,返回以上,右,下,左固定顺序的脸部位置列表的作用是将已知脸部位置和未知面部编码进行比较,得到欧式距离~~~具体是什么我也不知道,距离就相当于相识度。

函数说明:face_distance(face_encodings, face_to_compare)

face_encodings:已知的面部编码
face_to_compare:要比较的面部编码

本次图片前面两张没有变化,第三张换成了科比和乔丹的合影,最终运行之后结果如下:

左边是原图,右边是识别后自动标注出来的图片。

import face_recognition
from PIL import Image, ImageDraw
import numpy as np


def draws():
    kobe_image = face_recognition.load_image_file("kobe.jpg")
    kobe_face_encoding = face_recognition.face_encodings(kobe_image)[0]

    jordan_image = face_recognition.load_image_file("jordan.jpeg")
    jordan_face_encoding = face_recognition.face_encodings(jordan_image)[0]

    known_face_encodings = [
        kobe_face_encoding,
        jordan_face_encoding
    ]
    known_face_names = [
        "Kobe",
        "Jordan"
    ]

    unknown_image = face_recognition.load_image_file("two_people.jpeg")

    face_locations = face_recognition.face_locations(unknown_image)
    face_encodings = face_recognition.face_encodings(unknown_image, face_locations)

    pil_image = Image.fromarray(unknown_image)
    draw = ImageDraw.Draw(pil_image)

    for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings):
        matches = face_recognition.compare_faces(known_face_encodings, face_encoding)

        name = "Unknown"

        face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
        best_match_index = np.argmin(face_distances)
        if matches[best_match_index]:
            name = known_face_names[best_match_index]

        draw.rectangle(((left, top), (right, bottom)), outline=(0, 0, 255))

        text_width, text_height = draw.textsize(name)
        draw.rectangle(((left, bottom - text_height - 10), (right, bottom)), fill=(0, 0, 255), outline=(0, 0, 255))
        draw.text((left + 6, bottom - text_height - 5), name, fill=(255, 255, 255, 255))

    del draw
    pil_image.show()
    pil_image.save("image_with_boxes.jpg")

4. 给人脸美妆

这个功能需要结合 PIL 一起使用。用法都差不多,首先就是将图片文件加载到 numpy 数组中,然后将人脸中的面部所有特征识别到一个列表中

image = face_recognition.load_image_file("bogute.jpeg")
face_landmarks_list = face_recognition.face_landmarks(image)

遍历列表中的元素,修改眉毛

d.polygon(face_landmarks['left_eyebrow'], fill=(68, 54, 39, 128))
d.polygon(face_landmarks['right_eyebrow'], fill=(68, 54, 39, 128))
d.line(face_landmarks['left_eyebrow'], fill=(68, 54, 39, 150), width=5)
d.line(face_landmarks['right_eyebrow'], fill=(68, 54, 39, 150), width=5)

给人脸涂口红

d.polygon(face_landmarks['top_lip'], fill=(150, 0, 0, 128))
d.polygon(face_landmarks['bottom_lip'], fill=(150, 0, 0, 128))
d.line(face_landmarks['top_lip'], fill=(150, 0, 0, 64), width=8)
d.line(face_landmarks['bottom_lip'], fill=(150, 0, 0, 64), width=8)

增加眼线

d.polygon(face_landmarks['left_eye'], fill=(255, 255, 255, 30))
d.polygon(face_landmarks['right_eye'], fill=(255, 255, 255, 30))
d.line(face_landmarks['left_eye'] + [face_landmarks['left_eye'][0]], fill=(0, 0, 0, 110), width=6)
d.line(face_landmarks['right_eye'] + [face_landmarks['right_eye'][0]], fill=(0, 0, 0, 110), wid=6)

根据以上代码做了,我用实力不行,打球又脏的 "大嘴" 博格特来做演示!

左边是原图,右边是加了美妆后的效果

你打球的样子像极了 cxk!

推荐阅读:

利用 Flask 动态展示 Pyecharts 图表数据

Flask 蓝图机制及应用

Python获取NBA历史巨星和现役球员生涯曲线

THANDKS

- End -

<think>嗯,用户问的是在使用OpenCV进行人脸识别之前是否需要先训练数据,或者其他步骤。我需要先理清楚OpenCV中人脸识别的不同方法,因为有些方法可能需要训练,而有些可能不需要。 首先,OpenCV自带了一些预训练的级联分类器,比如Haar Cascade,用于人脸检测。检测和识别其实是不同的步骤,检测是找到人脸的位置,而识别是确定这是谁的脸。用户可能混淆了这两个概念,需要区分开。 如果用户只是想检测人脸,比如在图片中找到人脸的位置,那么不需要训练数据,直接使用预训练的Haar Cascade或DNN模型就可以了。这时候的步骤就是加载模型,读取图像,进行检测,然后标注结果。这部分不需要训练,应该先确认用户的需求是否是单纯的检测。 但如果用户想要进行人脸识别,也就是识别出这是谁,这时候就需要训练数据了。比如使用LBPHFaceRecognizer这样的算法,用户需要准备每个人的人脸样本,训练模型,然后进行预测。这时候的流程包括数据收集、预处理、训练模型、保存模型,最后再调用模型进行识别。需要详细说明每个步骤,比如数据收集需要不同光照、角度,预处理可能需要灰度化、直方图均衡化等。 另外,用户可能不知道检测和识别的区别,所以需要明确这两者的不同步骤。可能还需要提醒一些注意事项,比如数据样性、实时处理的优化,或者如果不想训练的话可以使用预训练的人脸识别模型,比如基于深度学习的方法,但OpenCV的传统方法可能需要自己训练。 还要考虑到用户的实际应用场景,如果只是简单的项目,可能用Haar Cascade检测就了;如果是需要识别特定的人,就需要训练。同时,数据准备和预处理的重要性,比如足的样本,不同条件下的数据,避免过拟合。 总结回答的结构应该是先区分检测和识别,说明各自是否需要训练,然后分步骤讲解流程,最后给出注意事项和建议。这样用户可以根据自己的需求选择合适的方法,并了解必要的步骤。</think>使用OpenCV进行人脸识别通常分为两大阶段:**人脸检测**和**人脸识别**。是否需要训练数据取决于你的具体需求。以下是分步骤说明: --- ### 一、基础流程与是否需要训练数据 1. **人脸检测(无需训练)** - **目标**:定位图像中的人脸区域。 - **方法**:直接使用OpenCV预训练模型(如Haar级联分类器或DNN模型)。 - **代码示例**: ```python import cv2 # 加载预训练的人脸检测模型 face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml') img = cv2.imread("image.jpg") gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5) ``` 2. **人脸识别(可能需要训练)** - **目标**:判断检测到的人脸属于哪个已知个体。 - **方法**: - **预训练模型**:使用OpenCV的深度学习模块(如基于ResNet的FaceNet),无需自行训练。 - **传统方法**:使用OpenCV的`LBPHFaceRecognizer`或`EigenFaceRecognizer`,需自行训练数据。 --- ### 二、如果需要训练数据:详细步骤 若选择传统方法(如LBPH),需按以下流程操作: 1. **数据收集** - 为每个待识别人物采集张人脸图像(建议每人至少50张),覆盖不同光照、角度、表情。 2. **数据预处理** - 统一图像尺寸(如`100x100`像素)。 - 灰度化、直方图均衡化(增强对比度)。 - 代码示例: ```python def preprocess(image): gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) gray = cv2.equalizeHist(gray) return cv2.resize(gray, (100, 100)) ``` 3. **训练模型** - 使用`LBPHFaceRecognizer`训练: ```python import os recognizer = cv2.face.LBPHFaceRecognizer_create() faces, labels = [], [] # 假设数据存储在dataset/人名/图片.jpg for person_name in os.listdir("dataset"): person_dir = os.path.join("dataset", person_name) label = int(person_name.split("_")[0]) # 为每个人分配唯一标签 for img_file in os.listdir(person_dir): img_path = os.path.join(person_dir, img_file) img = cv2.imread(img_path) faces.append(preprocess(img)) labels.append(label) recognizer.train(faces, np.array(labels)) recognizer.save("model.yml") ``` 4. **调用模型进行识别** ```python recognizer = cv2.face.LBPHFaceRecognizer_create() recognizer.read("model.yml") # 对检测到的人脸进行识别 for (x, y, w, h) in faces: face_roi = gray[y:y+h, x:x+w] label, confidence = recognizer.predict(face_roi) print(f"识别结果:{label}, 置信度:{confidence}") ``` --- ### 三、其他关键注意事项 1. **数据样性**:训练数据需覆盖实际应用场景(如光线变化、遮挡)。 2. **实时优化**:若需实时识别,可结合`VideoCapture`和线程。 3. **深度学习替代方案**: - 使用OpenCV的`dnn`模块加载预训练的深度学习模型(如OpenFace、FaceNet),无需自行训练。 - 示例: ```python model = cv2.dnn.readNetFromTorch("openface_nn4.small2.v1.t7") blob = cv2.dnn.blobFromImage(face_image, scalefactor=1.0, size=(96, 96)) model.setInput(blob) embeddings = model.forward() ``` --- ### 总结 - **若仅需人脸检测**:无需训练,直接调用预训练模型。 - **若需人脸识别**: - 传统方法需自行训练数据(适合小规模、定制化场景)。 - 深度学习方法可直接用预训练模型(适合高精度、通用场景)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

全村之希望

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值